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I. INTRODUCTION 
 

Fractional calculus has become of increasing use for 

analyzing not only stochastic processes driven by 

fractional Brownian processes (Wyss [1]), but also non -

random fractional phenomena in physics (Jumarie[2]), like 

the study of porous systems, for instance, and quantum 

mechanics (Shawagfeh[3]).whichever the framework is, 

we believe that the very reason for introducing and using 

fractional derivative is to deal with non-differentiable 

functions. 

In engineering applications of probability, stochastic 

processes are often used to model the input of a system. 

For instance, the financial mathematics requires stochastic 

models for the time evolution of assets and the queuing 

networks analysis is based on models of the offered traffic. 

Hitherto, the stochastic processes used in these fields are 

often supposed to be Markovian. However, recent studied 

(Leland et al[4]) show that real inputs exhibit long-range 

dependence: the behavior of a real process after a given 

time 𝑡 does not only depend on the situation at 𝑡 but also 

of the whole history of the process up to time 𝑡. Moreover, 

it turns out that this property is far from being negligible 

because of the effects it induces on the expected behavior 

of the global system (Norros[5]). 

In practice, random fluctuations of interest rate over 

time have a significant contribution to the change of an 

option price. An option on a stock is an asymmetric 

contract which entitles the holder to buy (call) or sell (put) 

a share at a specified price (strike or exercise price) on 

(European) or before (American) a certain date. The basic 

background for option pricing is given inSharpe et al, [6] 

and a more specializedtreatment may be found inWilmott 

et al [7]. For the last three decades, much of the 

mathematical study inthis area has focused on the 

boundary value problems associated with the Black-

Scholes partialdifferential equation (see Black and Scholes 

[8], Merton [9]). 

Based on this observation, some work has been reported 

on the price formula of European options with stochastic 

interest rate. Most of all, Merton [10], Rabinovitch [11], 

and Amin and Jarrow [12] have proposed the formula of 

closed form European option pricing under the Gaussian 

interest rate by using relatively simple algebra. This 

method is also discussed in detail by Kim [13]. Also, Fang 

[14] derived an exact pricing formula for European option 

under stochastic interest rate by applying martingale 

method. However, the closed formula for the prices of 

options has been studied usually by utilizing probabilistic 

techniques as the papers stated above. The use analytic 

methods based on Mellin transforms as a better way to 

compute the option prices had been done (Yoon [15]). 

The Mellin transform is defined as an integral transform 

that may be considered as the multiplicative version of the 

two-sided Laplace transform. Many papers have shown 

that the Mellin transform technique would help us resolve 

the complexity of the calculation compared to the 

probabilistic approach. Panini and Srivastav [16] studied 

the pricing formula of a European vanilla option and a 

basket option using Mellin transforms. Panini and 

Srivastav [17] found also the pricing of perpetual 

American options with Mellin transforms. Frontczak and 

Schöbel [18] used Mellin transforms to value American 

call options on dividend-paying stocks. Also, Elshegmani 

and Ahmed [19] derived analytical solution for an 

arithmetic Asian option using Mellin transforms.  

Fractional differential equation (FDE) can be 

extensively applied to various disciplines such as physics, 

mechanics, chemistry and engineering, (see Mainardi [20], 

Buckwar and Luchko[21]). Hence, in recent years, 

fractional differential equations have been of great interest 

and there have been many results on existence and 

uniqueness of the solutions of FDE, (see Zhu et 

al[22],Wang et al[23]), thus giving good motivation 

forfurther development of this topic. A fractional Black-

Scholes formula for the price of an option for every 𝑡 ∈
[0, 𝑇]driven by afractional Brownian motion is a family 

member of the FDE. 

Our main objective this paper is to derive fractional 

Black-Scholes equation driven by a fractional Brownian 

motion with Hurst index 𝐻 ∈ (
1

2
, 1) . Furthermore, we 

remove the effect of the interest rate 𝑟 , using a simple 

transformation. Then a new technique which does not 

require transformation of variable for the solution of the 
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fractional Black-Scholes partial differential equation for 

option prices is derived using the Mellin transforms. 

 

II. BACKGROUND 

 

In this section we summarize the results from Du et al [24] 

that we will need. Fix a Hurst constant 𝐻,
1

2
< 𝐻 < 1 . 

Define 

𝜙(𝑠, 𝑡) = 𝐻(2𝐻 − 1)|𝑠 − 𝑡|2𝐻−2; 𝑠, 𝑡 ∈ ℝ.               (2.1) 

Let 𝑓:ℝ → ℝ be measurable. Then we say that 𝑓 ∈ 𝐿𝜙
2 (ℝ) 

if 

|𝑓|𝜙
2 ≔ ∫

∋
∫
∋
𝑓(𝑠)𝑓(𝑡)𝜙(𝑠, 𝑡)𝑑𝑠𝑑𝑡 < ∞.  (2.2) 

If we equip 𝐿𝜙
2 (ℝ) with the inner product 

(𝑓, 𝑔)𝜙 ≔ ∫
𝔷
∫
𝔷
𝑓(𝑠)𝑔(𝑡)𝜙(𝑠, 𝑡)𝑑𝑠𝑑𝑡;  𝑓, 𝑔 ∈ 𝐿𝜙

2 (ℝ). (2.3) 

then𝐿𝜙
2 (ℝ) becomes a separable Hilbert space. In fact, we 

have 

Lemma 2.1: Let 

Γϕ𝑓(𝑢) = 𝑐𝐻 ∫ (𝑡 − 𝑢)𝐻−3/2𝑓(𝑡)𝑑𝑡
∞

𝑢
  (2.4) 

where 𝑐𝐻 = √
𝐻(2𝐻−1)Γ(

3

2
−𝐻)

Γ(𝐻−
1

2
)Γ(2−2𝐻)

 and Γ  denotes the gamma 

function. Then Γϕ is an isometry from 𝐿𝜙
2 (ℝ)to 𝐿2(ℝ). 

Proof: By a limiting argument, we may assume that 𝑓 and 

𝑔 are continuous with compact support. By definition, 

(Γϕ(f),Γϕ(g))
𝐿2(∋)

 

= 𝑐2𝐻∫𝔷 {∫ (𝑠 − 𝑢)𝐻−3/2𝑓(𝑠)𝑑𝑠∫ (𝑡 − 𝑢)𝐻−3/2𝑔(𝑡)𝑑𝑡
∞

𝑢

∞

𝑢

}𝑑𝑢 

= 𝑐2𝐻∫𝔷2𝑓(𝑠)𝑔(𝑡) {∫ (𝑠 − 𝑢)𝐻−3/2(𝑡 − 𝑢)𝐻−3/2𝑑𝑢
𝑠Λ𝑡

−∞

} 𝑑𝑠𝑑𝑡 

= ∫
𝔷
∫
𝔷
𝑓(𝑠)𝑔(𝑡)𝜙(𝑠, 𝑡)𝑑𝑠𝑑𝑡 =  (𝑓, 𝑔)𝜙 

where we have used the identity 

𝑐2𝐻 ∫ (𝑠 − 𝑢)𝐻−3/2(𝑡 − 𝑢)𝐻−3/2𝑑𝑢
𝑠Λ𝑡

−∞
= 𝜙(𝑠, 𝑡), 

(see for example Gripenberg and Norros[25], p. 404). 

If 𝑓 ∈ 𝐿𝜙
2 (ℝ)  (deterministic) one can define 

∫
𝔷
𝑓(𝑡)𝑑𝐵𝐻(𝑡) = ∫𝔷𝑓(𝑡)𝛿𝐵𝐻(𝑡) in the usual way by first 

considering simple integrands 

𝑓𝑚(𝑡) = ∑ 𝑎𝑖
(𝑚)𝜒[𝑡𝑖,𝑡𝑖−1(𝑡)𝑖 , 

Setting 

∫
𝔷
𝑓𝑚(𝑡)𝑑𝐵𝐻(𝑡) = ∑ 𝑎𝑖

(𝑚)(𝐵𝐻(𝑡𝑖−1) − 𝐵𝐻(𝑡𝑖))𝑖  (2.5) 

and defining 

∫
𝔷
𝑓𝑚(𝑡)𝑑𝐵𝐻(𝑡) = lim

𝑚→∞
∫
𝔷
𝑓𝑚(𝑡)𝑑𝐵𝐻(𝑡).  (2.6) 

The limit exists in 𝐿2(𝜇𝜙) because of the isometry 

 Ε (∫
𝔷
𝑓𝑚(𝑡)𝑑𝐵𝐻(𝑡))

2

= |𝑓𝑚|𝜙
2 ,  (2.7) 

where 𝜇𝜙  is the probability law of 𝐵𝐻  (see also next 

section). For 𝑓 ∈ 𝐿𝜙
2 (ℝ) define 

 𝜀(𝑓) = exp (∫
𝔷
𝑓𝑑𝐵𝐻 −

1

2
|𝑓|𝜙

2 ).  (2.8) 

Then we have (Duet al [24], Theorem 3.1): 

The linear span of {𝜀(𝑓);  𝑓 ∈ 𝐿𝜙
2 (ℝ)} is dense in 𝐿2(𝜇𝜙).       

 

III. FORMULATION OF THE FRACTIONAL 

BLACK-SCHOLES EQUATION 
 

Geometric Brownian motion is often used to model the 

price of a share .In this paper,ouraim is to model the price 

of a share instead with the fractional Brownian motion 

with Hurst parameter 𝐻; (0 < 𝐻 < 1). 
Let  𝑋(𝑡)denote the price of one unit of a given share at 

time t and suppose that the price dynamics of the share is 

given by 

𝑑𝑋(𝑡) = 𝑎(𝑡)𝑋(𝑡)𝑑𝑡 + 𝑏(𝑡)𝑋(𝑡)𝑑𝑊𝐻(𝑡)          (3.1) 
where𝑎, 𝑏: [0, 𝑇] → 𝑅    are some functions and𝑊𝐻(𝑡) a 

fractional Brownian motion with Hurst index 𝐻 ∈ (
1

2
, 1). 

We interpret 𝑎(𝑡) as the interest rate and 𝑏(𝑡)  as the 

volatility, which is the strength of fluctuations in the 

market.The price of a European call option for the share X 

can be found by the fractional Black Scholes equation. 

Theorem 3.1 (Fractional Black-Scholes Equation): 
Let the price 𝑝(𝑡, 𝑥) of a European call option for a share 

satisfying (3.1) with initial condition 𝑋(𝑡) = 𝑥, is given by 

the partial differential equation 

 {

𝜕𝑝

𝜕𝑡
+ 𝑎(𝑡)𝑥

𝜕𝑝

𝜕𝑥
(𝑡, 𝑥) + 𝐻(𝑏(𝑡)𝑥)2𝑡2𝐻−1

𝜕2𝑝

𝜕𝑥2
(𝑡, 𝑥)

= 𝑎(𝑡)𝑝(𝑡, 𝑥), 𝑓𝑜𝑟 0 < 𝑡 < 𝑇, 𝑥 ∈ 𝑅

𝑝(𝑇, 𝑥) = (𝑥 − 𝐾)+   𝑓𝑜𝑟 𝑥 ∈ 𝑅.      

   (3.2) 

  

Here K is the pre-specified price, for which the owner of 

the option many purchase one unit of the stock X at time 

T. 

Proof: We prove this theorem in the case of constant 𝑎 

and 𝑏 for simplicity (though theprove is similar for non-

constant a and b).Let 𝑋 be given by (3.1) and assume the 

existence of a risk free paper B satisfying. 

 𝑑𝐵(𝑡) = 𝑎𝐵𝐻(𝑡)𝑑𝑡.             (3.3)  

Consider now the portfolio replicating,the option 

𝐼(𝑡) = −𝑝(𝑡, 𝑋(𝑡)) + 𝛼(𝑡)𝑋(𝑡) + 𝛽(𝑡)𝐵𝐻(𝑡),     (3.4) 

for some     Rtt  , . In the sense that no money is 

brought in or taken out of the portfolio,we say that the 

portfolio self-financing.That is applying the Ho formula to 

 tI  (and suppressing the evaluation point (  tXt,  for 

notational clarity),we obtain 

𝑑𝐼(𝑡) = −𝑑𝑝 + 𝑑(𝛼(𝑡)𝑋(𝑡) + 𝛽(𝑡)𝐵(𝑡)) 

=
𝜕𝑝

𝜕𝑡
𝑑𝑡 −

𝜕𝑝

𝜕𝑥
𝑑𝑋(𝑡) −

𝜕2

𝜕𝑥2
𝐷𝑡
∅𝑥(𝑡)𝛽(𝑡)𝑑𝑋 + 𝛼(𝑡)𝑑𝑋(𝑡)

+ 𝛽(𝑡)𝑑𝐵(𝑡) 

= (−
𝜕𝑝

𝜕𝑡
−

𝜕𝑝

𝜕𝑥
𝑎𝑋(𝑡) −

𝜕2𝑝

𝜕𝑥2
𝐻𝑏2𝑡2𝐻−1(𝑋(𝑡))

2
+

 𝛼(𝑡)𝑋(𝑡) + 𝛽(𝑡)𝑎𝐵(𝑡))𝑑𝑡 + (𝛼(𝑡) −
𝜕𝑝

𝜕𝑥
) 𝑏𝑋(𝑡)𝑑𝑊𝐻(𝑡)   

(3.5) 
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where         12,  Ht

ot ttbHXduuttbXtXD 
. 

For the portfolio to become riskless choose  
x

p
t




 so 

that 

𝑑𝐼(𝑡) = (−
𝜕𝑝

𝜕𝑡
−

𝜕2𝑝

𝜕𝑥2
𝐻𝑏2𝑡2𝐻−1(𝑋(𝑡))

2
+ 𝛽(𝑡)𝑎𝐵(𝑡)) 𝑑𝑡.            

(3.6)  

Suppose that the opportunity of arbitrage in made 

impossible, so that the probability, of gaining money 

without risk in zero, them  tI ,being riskless, must evolve 

as the risk free paper B. 

Hence    dttaItdI  and, by combining (3.4) and 

(3.6), we have 

(−
𝜕𝑝

𝜕𝑡
−
𝜕2𝑝

𝜕𝑥2
𝐻𝑏2𝑡2𝐻−1(𝑋(𝑡))

2
+ 𝛽(𝑡)𝑎𝐵(𝑡))𝑑𝑡 

= 𝑑𝐼(𝑡) = 𝑎𝐼(𝑡)𝑑𝑡 = 𝑎(−𝑝 + 𝛼(𝑡)𝑋(𝑡) + 𝛽(𝑡)𝐵(𝑡))𝑑𝑡 

= 𝑎 (−𝑝 +
𝜕𝑦

𝜕𝑥
𝑋(𝑡) + 𝛽(𝑡)𝐵(𝑡)) 𝑑𝑡.               (3.7) 

Setting  tXx  ,we have the fractional partial 

differential 
𝜕𝑝

𝜕𝑡
+ 𝑎𝑥

𝜕𝑝

𝜕𝑥
+

𝜕2𝑝

𝜕𝑥2
𝐻𝑏2𝑡2𝐻−1𝑥2 − 𝑎𝑝 = 0.  (3.8) 

For  𝑡 < 𝑇, where 𝑇 is the exercise time of the option.At 

time T the cost of exercising the option is K so the 

terminal condition corresponding to (3.8) must be  

 𝑝(𝑇, 𝑥) = (𝑥 − 𝐾)+.   (3.9) 

We now represent the solution to the following partial 

differential equation with prescribed terminal value 

(

𝜕𝑃

𝜕𝑇
(𝑡, 𝑥) + 𝐴𝑃(𝑡, 𝑥) = 0, 𝑓𝑜𝑟 0 < 𝑡 < 𝑇, 𝑥 ∈ 𝑅

𝑃(𝑡, 𝑥) = ∅(𝑥), 𝑓𝑜𝑟 𝑥 ∈ 𝑅
) , (3.10) 

where the differential operator A is given by 

𝐴𝑃(𝑡, 𝑥) = 𝜇(𝑡, 𝑥)
𝜕𝑃

𝜕𝑥
(𝑡, 𝑥) + 𝐻(𝜎(𝑡, 𝑥))

2
𝑡2𝐻−1

𝜕2𝑃

𝜕𝑥2
(𝑡, 𝑥)  

(3.11) 

In terms of the fractional stochastic differential 

equations,let P be a solution to (3.10),fix the point  xt,  

and define X to be the fractional differential equation 

𝑑𝑋(𝑡) = 𝜇(𝑡, 𝑋(𝑠))𝑑𝑡 + 𝜎(𝑡)𝑋(𝑠)𝑑𝑊𝐻(𝑡), 𝜇, 𝜎𝜖𝐿∅
1,2,     

       (3.12)  

where𝜎 is the volatility, 𝜇 the drift parameter with initial 

value   .xtX  if  XRRcp  2
 then we have; 

(𝑇, 𝑋(𝑡)) = 𝑃(𝑡, 𝑋(𝑡)) + ∫
𝜕𝑃

𝜕𝑠
(𝑠, 𝑋(𝑠))𝑑𝑠 +

𝜏

𝑡

 

∫
𝜕𝑃

𝜕𝑥
(𝑠, 𝑋(𝑠))𝜇(𝑠)𝑑𝑠 + ∫

𝜕𝑃

𝜕𝑥
(𝑠, 𝑋(𝑠))𝜎(𝑠)𝑑𝑊𝐻 +

𝜏

𝑡

𝜏

𝑡

∫
𝜕2𝑃

𝜕𝑥2
(𝑠, 𝑋(𝑠))𝜎(𝑠)𝐷𝑠

∅𝑑𝑠
𝜏

𝑡
= ∫ (

𝜕𝑃

𝜕𝑠
(𝑠, 𝑋(𝑠)) +

𝜏

𝑡

𝐴𝑃(𝑠, 𝑋(𝑠) ) 𝑑𝑠 = ∫
𝜕𝑃

𝜕𝑥
(𝑠, 𝑋(𝑠))𝜎(𝑠)𝑑𝑊𝐻 ,

𝜏

𝑡
         (3.13) 

𝑃is the solution to (3.10), so (3.13) becomes 

∅(𝑋(𝑡)) − 𝑃(𝑡, 𝑥(𝑡)) = ∫
𝜕2𝑃

𝜕𝑥2
(𝑠, 𝑋(𝑠))𝑑𝑊𝐻(𝑠)

𝜏

𝑡
. (3,14) 

Taking expectation of both sides gives 

 ))((),( , TXExtp xt  ,                    (3.15) 

Where the indices xt,  means that the process 𝑋satisfies 

𝑋(𝑡 ). Similarly, we can show that the solution to the 

partial differential equation 

{
𝜕𝑝

𝜕𝑡
(𝑡, 𝑥) + 𝐴𝑝(𝑡, 𝑥) − 𝑞(𝑡, 𝑥)𝑝(𝑡, 𝑥) = 0,   0 < 𝑡 < 𝑇, 𝑥 ∈ 𝑅

𝑝(𝑡, 𝑥) = ∅(𝑥),                                                               𝑥 ∈ 𝑅        
       

 

 (3.16) is given by  

𝑝(𝑡, 𝑥) = 𝐸𝑡,𝑥 [∅(𝑋(𝑇)𝑒𝑥𝑝 (−∫ 𝑞(𝑠, 𝑋(𝑠)𝑑𝑠
𝑇

𝑡

)] 

= ∫
1

√2𝜋(𝑇2𝐻−𝑡2𝐻)

𝑒𝑥𝑝 (
−(𝑥−𝑊𝐻(𝑡))

2

2(𝑇2𝐻−𝑡2𝐻)
)

𝑅
𝑝(𝑥)𝑑𝑥.  (3.17) 

So that 

𝑃(𝑡, 𝑥) = 𝐸 [𝑥𝑒𝑥𝑝 (𝑏𝑊𝐻(𝑡) + 𝑎𝑡 −
 1

2
𝑏2𝑡2𝐻𝑘) −

𝑘+exp (−𝑎(𝑇 − 𝑡))]             (3.18) 

Corollary 3.1:  Let 𝐻 >
1

2
 and 𝑓: 𝑅 → 𝑅  be a twice 

differentiable function with bounded derivatives. Define 

𝑃(𝑥, 𝑡) = 𝐸𝐻[𝑓(𝑥 +𝑊𝑡)], we have 

𝑑𝑃̅

𝑑𝑡
+ 𝐻𝜎2𝑡2𝐻−1𝑥̅2

𝜕2𝑃̅

𝜕𝑥̅2
= 0.  (3.19) 

Proof: 
Alternatively one can solve equation (3.2) for stock 

which is already priced in the market. To do this, we 

remove the effect of the discount rate 𝑟 by letting 

𝑃̅ = 𝑒−𝑟𝑡𝑃 ⟹ 𝑃 = 𝑃̅𝑒𝑟𝑡  , 𝑥̅ = 𝑒−𝑟𝑡𝑥 ⟹ 𝑥 = 𝑥̅𝑒𝑟𝑡,  (3.20) 

so that equation (3.2) becomes as required. 

 

IV. THE MELLIN TRANSFORMATION 
 

The Mellin transformation is a basic tool for analysing 

the behaviour of many important functions in mathematics 

and mathematical physics, such as the zeta functions 

occurring in number theory and in connection with various 

spectral problems. We describe it first in its simplest form 

and then explain how this basic definition can be extended 

to a much wider class of functions, important for many 

applications. 

Let 𝜑(𝑡) be a function on the positive real axis 𝑡 > 0 

which is reasonably smooth (actually, continuous or even 

piecewise continuous would be enough) and decays 

rapidly at both 0and ∞, i.e., the function 𝜑(𝑡) is bounded 

on ℝ+ for any 𝐴 ∈ ℝ. Then the integral 

 𝜑̅(𝑠) = ∫ 𝜑(𝑡)
∞

0
𝑡𝑠−1𝑑𝑡   (4.1) 

converges for any complex value of 𝑠  and defines a 

holomorphic function of 𝑠 called the Mellin transform of 

𝜑(𝑠) . The following small table, in which 𝛼  denotes a 

complex number and 𝜆 a positive real number, shows how 

𝜑̅(𝑠)  changes when 𝜑(𝑡)  is modified in various simple 

ways: 

𝜑(𝜆𝑡)𝑡𝛼𝜑(𝑡)              𝜑(𝑡𝜆)         𝜑(𝑡−1)             𝜑′(𝑡)

𝜆−𝑠𝜑̅(𝑠)𝜑̅(𝑠 + 𝛼)𝜆−𝑠𝜑̅(𝜆−1𝑠)𝜑̅(−𝑠)(1 − 𝑠)𝜑̅(𝑠 − 1)
  

(4.2) 
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We also mention, although we will not use it in the 

sequel, that the function 𝜑(𝑡) can be recovered from its 

Mellin transform by the inverse Mellin transformation 

formula 

𝜑(𝑡) =
1

2𝜋𝑖
∫ 𝜑̅(𝑠)𝑡−𝑠
𝐶+𝑖∞

𝐶−𝑖∞
𝑑𝑠,  (4.3) 

where 𝐶 is any real number. (That this is independent of 𝐶 

follows from Cauchy’s formula).  

However, most functions which we encounter in 

practice are not very small at both zero and infinity. If we 

assume that 𝜑(𝑡) is of rapid decay at infinity but grows 

like 𝑡−𝐴 for some real number 𝐴as 𝑡 → 0, then the integral 

(1) converges and defines a holomorphic function only in 

the right half-plane ℜ(𝑠) > 𝐴 . Similarly, if 𝜑(𝑡)  is of 

rapid decay at zero but grows like 𝑡−𝐵 at infinity for some 

real number 𝐵 , while if 𝜑(𝑡)  has polynomial growth at 

both ends, say like 𝑡−𝐴 at 0 and like 𝑡−𝐵 at ∞ with 𝐴 < 𝐵, 

then 𝜑̅(𝑠) is holomorphic  only in the strip 𝐴 < 𝑅(𝑠) < 𝐵. 

But it turns out that in many cases the function 𝜑̅(𝑡) has a 

meromorphic extension to a larger half-plane or strip than 

the one in which the original integral (1) converges, or 

even to the whole complex plane. Moreover, this extended 

Mean transform can sometimes be defined even in cases 

where 𝐴 > 𝐵, in which case the integral ( 4.3 ) does not 

converge for any value of 𝑠 at all. 

Taking the Mellin transform of the fractional Black-

Scholes partial differential equation for an option price 

given in (3.19), we have that 

𝑀(
𝜕𝑃(𝑥𝑡,𝑡)

𝜕𝑡
) = 𝑀 (−𝐻𝜎2𝑥𝑡

2𝑡2𝐻−1
𝜕2𝑃(𝑥𝑡,𝑡)

𝜕𝑆𝑡
2 )  (4.4) 

with the boundary condition  

𝑝(𝑆𝑡 , 𝑇) = 𝑚𝑎𝑥[𝑒−𝑟(𝑡−𝑇)(𝐾 − 𝑆𝑡), 0]

lim
𝑆𝑡→0

𝑝(𝑆𝑡 , 𝑇) = 𝐾𝑒−𝑟(𝑡−𝑇)

lim
𝑆𝑡→∞

𝑝(𝑆𝑡 , 𝑇) = 0
}
 

 

.  (4.5) 

Using the properties of the Mellin transforms, we have; 

                               𝑀 (
𝜕𝑝

𝜕𝑡
(𝑥, 𝑡)) =

𝑑

𝑑𝑡
𝑝(𝑣, 𝑡)

𝑀(𝐻𝜎2𝑡2𝐻−1𝑥2𝑃(𝑠, 𝑡)) = −𝐻𝜎2𝑡2𝐻−1(𝑣2 + 𝑣)𝑃(𝑣, 𝑡)
}.  

(4.6) 

Substituting (4.6) into (4.4) and simplifying further yields 

𝑑𝑝(𝑣,𝑡)

𝑑𝑡
= −𝐻𝜎2𝑡2𝐻−1(𝑣2 + 𝑣)𝑝(𝑣, 𝑡), 𝑡 ∈ [0, 𝑇]. (4.7) 

Integrating (4.7) yields 

𝑝(𝑣, 𝑡) = 𝐴(𝑣) −
𝜎2𝑡2𝐻

2
(𝑣2 + 𝑣).    (4.8) 

Setting 

𝜓(𝑣) =
𝜎2𝑡2𝐻

2
(𝑣2 + 𝑣),           (4.9) 

then (4.8) becomes 

𝑝(𝑣, 𝑡) = 𝐴(𝑣) − 𝜓(𝑣).               (4.10) 

Where 𝐴(𝑣) is a constant of integration to be determined 

and it is defined as 

𝐴(𝑣) = 𝜓(𝑣, 𝑡) +
𝜎2

2
𝑇2𝐻(𝑣2 + 𝑣)             (4.11) 

𝜓(𝑣, 𝑡)can be obtained by taking the Mellin transform of 

the initial condition of the form 

𝜓(𝑣, 𝑡) = ∫ 𝑚𝑎𝑥
∞

0
(𝑘 − 𝑥𝑡)

+𝑥𝑡
𝑣−1𝑑𝑥𝑡 =

𝐾1+𝑣

𝑣(𝑣+1)
.       (4.12) 

Using equations (4.10), (4.11) and (4.12), we have that 

𝑝(𝑣, 𝑡) =
𝐾𝐻𝑉

𝑣(𝑣+1)
−

𝜎2

2
(𝑣2 + 𝑣)(𝑡2𝐻 − 𝑇2𝐻).         (4.13) 

Combining (3.20) and (4.13) we have; 

𝑃̅ = [
𝐾1+𝑉

𝜓𝑣
−

𝜎2

2
𝜓(𝑟)(𝑡2𝐻 − 𝑇2𝐻)] 𝑒−𝑟(𝑡−𝑇).         (4.14) 

The Mellin inversion of (4.14) is obtained as 

𝑀−1(𝑝(𝑣, 𝑡)) = 𝑝(𝑥𝑡 , 𝑡) =
1

2𝜋𝑗
∫ [

𝐾1+𝑉

𝑣(𝑣−1)
−

𝑎+𝑗∞

𝑎−𝑗∞

𝜎2

2
(𝑣2 + 𝑣)(𝑡2𝐻 − 𝑇2𝐻)] 𝑒−𝑟(𝑡−𝑇) 𝑥𝑡

−𝑣𝑑𝑣.          (4.15) 

In what follows, we want to show that the expression 

(4.15) is a solution of the Black-Scholes partial differential 

equation for options price given by (3.2). Assume that 

𝑣 = 𝑚 + 𝑗𝑛 ⇒ 𝑑𝑣 = 𝑗𝑑𝑛      (4.16) 

Substituting (4.16) into (4.15) yields 

𝑝(𝑥𝑡 , 𝑡) =
1

2𝜋
∫ [

𝐾1+𝑚+𝑛𝑗

(𝑚+𝑗𝑛)(𝑚+𝑛𝑗+1)
−

𝜎2

2
(𝑚 + 𝑗𝑛)2 +

∞

−∞

(𝑚 + 𝑛𝑗)] (𝑡2𝐻 − 𝑇2𝐻)𝑒−𝑟(𝑡−𝑇) 𝑥𝑡
−(𝑚+𝑗𝑛)

𝑑𝑛.         (4.17) 

But 𝑃(𝑥𝑡 , 𝑡)  is Mellin transformable and continuous, 

therefore setting 𝑡 = 𝑇, we have (4.17) becoming 

𝑃(𝑥𝑡 , 𝑡) =
1

2𝜋
∫

𝐾1+𝑚+𝑗𝑛

(𝑚+𝑗𝑛)(𝑚+𝑗𝑛+1)

∞

−∞
𝑥𝑡
−(𝑚+𝑗𝑛)

𝑑𝑛.        (4.18) 

Equation (4.17) is well defined and satisfies (4.18). 

Using the definition of the Mellin transforms, then 

|
𝐾1+𝑚+𝑗𝑛

(𝑚+𝑗𝑛)(𝑚+𝑗𝑛+1)
| ≤ 𝑀(𝑚) ∫ |𝑓(𝑠)|

∞

0
𝑠𝑚−1𝑑𝑠    ∀𝑛 ∈ 𝑅  

(4.19) 

and for 𝑡 ∈ [0, 𝑇) we have that 

 

∫ |(
𝐾1+𝑚+𝑛𝑗

(𝑚+𝑗𝑛)(𝑚+𝑛𝑗+1)
−

𝜎2

2
(𝑚 + 𝑗𝑛)2 + (𝑚 + 𝑛𝑗)) (𝑡2𝐻 − 𝑇2𝐻)|

∞

−∞
|𝑥𝑡
−(𝑚+𝑗𝑛)

||𝑒−𝑟(𝑡−𝑇)| 𝑑𝑛  

≤ 𝑀(𝑚)𝑥𝑇
−𝑚 (

𝐾1+𝑚+𝑛𝑗

(𝑚+𝑗𝑛)(𝑚+𝑛𝑗+1)
−

𝜎2

2
(𝑚 + 𝑗𝑛)2 + (𝑚 + 𝑛𝑗)) (𝑡2𝐻 − 𝑇2𝐻) ∫ exp(−𝑟𝑛(𝑡 − 𝑇))𝑑𝑛

∞

−∞

     (4.20) 

Using the differentiation theorem of parameter integrals and the fact that 

∫ 𝑛𝑗
∞

−∞
exp (

−𝜎2

2
) (𝑇 − 𝑡)𝑑𝑛 < ∞, 𝑗 = 0,1,2, … , 𝑡 ∈ [0, 𝑇).       (4.21) 

Then it follows that upon differentiation of (4.17), we have that 
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𝜕𝑃(𝑥𝑡,𝑡)

𝜕𝑡
= −

1

2𝜋
∫ [

𝐾1+𝑚+𝑛𝑗

(𝑚+𝑗𝑛)(𝑚+𝑛𝑗+1)
−

𝜎2

2
(𝑚 + 𝑗𝑛)2 + (𝑚 + 𝑛𝑗)] (𝑡2𝐻 − 𝑇2𝐻)𝑒−𝑟(𝑡−𝑇)

∞

−∞
𝑥𝑡
−(𝑚+𝑗𝑛)

𝑑𝑛

𝜕2𝑃(𝑥𝑡,𝑡)

𝜕𝑥𝑡
2 =

1

2𝜋
∫ [

𝐾1+𝑚+𝑛𝑗

(𝑚+𝑗𝑛)(𝑚+𝑛𝑗+1)
−

𝜎2

2
(𝑚 + 𝑗𝑛)2 + (𝑚 + 𝑛𝑗)] (𝑡2𝐻 − 𝑇2𝐻)𝑒−𝑟(𝑡−𝑇)

∞

−∞
𝑥𝑡
−(𝑚+𝑗𝑛+2)

𝑑𝑛
}.  (4.22) 

 

Substituting (4.22) into the Black-Sholes partial 

differential equation for the option price given in(3.19) 

𝑑𝑃̅

𝑑𝑡
+ 𝐻𝜎2𝑡2𝐻−1𝑥̅2

𝜕2𝑃̅

𝜕𝑥̅2
 

= −
1

2𝜋
∫(

𝐾1+𝑚+𝑛𝑗

(𝑚 + 𝑗𝑛)(𝑚 + 𝑛𝑗 + 1)
−
𝜎2

2
(𝑚 + 𝑗𝑛)2

∞

−∞

+ (𝑚 + 𝑛𝑗)(𝑡2𝐻 − 𝑇2𝐻)) 𝑒−𝑟(𝑡−𝑇) 𝑥𝑡
−(𝑚+𝑗𝑛)

𝑑𝑛 

+
1

2𝜋
∫ (

𝐾1+𝑚+𝑛𝑗

(𝑚 + 𝑗𝑛)(𝑚 + 𝑛𝑗 + 1)
−
𝜎2

2
(𝑚 + 𝑗𝑛)2

∞

−∞

+ (𝑚 + 𝑛𝑗)(𝑡2𝐻 − 𝑇2𝐻)) 𝑒−𝑟(𝑡−𝑇) 𝑥𝑡
−(𝑚+𝑗𝑛+2)

𝑑𝑛 

=
1

2𝜋
∫ {(

𝐾1+𝑚+𝑛𝑗

(𝑚 + 𝑗𝑛)(𝑚 + 𝑛𝑗 + 1)
−
𝜎2

2
(𝑚 + 𝑗𝑛)2

∞

−∞

+ (𝑚 + 𝑛𝑗)(𝑡2𝐻 − 𝑇2𝐻)) 𝑒−𝑟(𝑡−𝑇)} 

× (𝑥𝑡
−(𝑚+𝑗𝑛+2)

− 𝑥𝑡
−(𝑚+𝑗𝑛)

) 𝑑𝑛 = 0 . 

Hence 𝑝(𝑥𝑡 , 𝑡) defined by (4.15) is a solution of (3.9). 

 

V. CONCLUSION 
 

We have suggested an alternative approach in the 

derivation of the fractional Black- Schole PDE for the 

pricing of options (order than those found in literature, see 

Osu and Chukwunezu [27] and reference therein) and 

solution proffered using Mellin transform. It is worthy to 

note that to use the Mellin transform and condition that 

guarantee its existence, we assume 𝑝(𝑥𝑡 , 𝑡) is bounded of 

polynomial degree when 𝑥𝑡 → 0 and 𝑥𝑡 → ∞. 
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