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Abstract – The asymptotic behavior of finite-dimensional 

standard Brownian motion;  𝐥𝐢𝐦𝐬𝐮𝐩𝒕→∞

 𝑩(𝒕) 

 𝟐𝒕𝒍𝒐𝒈𝒍𝒐𝒈𝒕
= 𝟏, 𝒂. 𝒔, is 

one of the most important results on the law of the iterated 

logarithm (LIL). Among the most important limit theorems 

in probability theory is the LIL. This paper studies the non-

commutative martingale with a stochastic differential 

equation that obeys the law of iterated logarithm (LIL).We 

first establish herein, the connectivity between non 

commutative martingales and Stochastic Differential 

Equation and then show that this connection obeys the Law 

of Iterated Logarithm. 
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I. INTRODUCTION 
 

Non-commutative (or quantum) probability has 

developed into an independent field of mathematical 

research and has received considerable progress in recent 

years. Non-commutative martingales have been studied by 

several authors. For connections between mathematical 

physics, non-commutative probability and classical 

probability (see [1]). For interplay between operator 

algebras and free probability theory (see [13] and [7]). 

Biane and Speicher[3] connected stochastic analysis and 

free Brownian motion. 

It was Bachelier[2] who first used stochastic process as 

a model for the price evolution of a stock. For a stochastic 

process  𝑆𝑡 0≤𝑡≤𝑇  he gave a mathematical definition of 

Brownian motion, which in the present context is 

interpreted as follows: 𝑆0 is today’s (known) price of stock 

while for the time 𝑡 > 0  the price 𝑆𝑡  is a normally 

distributed random variable. The fundamental theorem of 

asset pricing states that a process 𝑆𝑡  does not allow 

arbitrage opportunities if and only if there is an equivalent 

probability measure under which 𝑆𝑡  is a martingale. This 

theorem was proved to hold true for commutative 

stochastic process in [5]. 

There are many reasons why non commutative 

martingales are of interest since classical mathematical 

finance theory is a well-developed discipline of applied 

mathematics which has numerous applications in financial 

markets. There is a great interest in generalizing this 

theory to the domain of quantum probabilities since the 

theory has its foundation on probability. It has been shown 

currently that the quantum version of financial markets is 

better suitable to real world financial markets rather than 

the classical one, because the quantum binomial model 

does not pose ambiguity which appears in the classical 

model of the binomial market. 

Our interest in this paper is on non-commutative 

martingale with a stochastic differential equation that 

obeys the law of iterated logarithm (LIL). 

In probability theory, LIL is among the most important 

limit theorems and the following law of the iterated 

logarithm is one of the most important results on the 

asymptotic behavior of finite-dimensional standard 

Brownian motion; 

 limsup
𝑡→∞

 𝐵(𝑡) 

 2𝑡𝑙𝑜𝑔𝑙𝑜𝑔𝑡
= 1, 𝑎. 𝑠. 

Classical work on iterated logarithm type results, as well 

as associated lower bounds on the growth of transient 

processes, date back to [6], there is an interesting literature 

on iterated logarithm results and the growth of lower 

envelopes for self-similar Markov processes,( see [4]). We 

applied the work of Motoo[9] on iterated logarithm results 

for Brownian Motions in finite dimensions in which the 

asymptotic behavior is determined by means of time 

change arguments which reduce the process under study to 

a stationary one. In this paper we establish the 

connectivity between non commutative martingales and 

Stochastic Differential Equation and show that this 

connection obeys the Law of Iterated Logarithm. 

 

II. COMMUTATIVE ALGEBRA   SPACE 
 

The question that non-commutative geometry set out to 

answer was, “if the commutative algebra of functions 

gives rise to a concept of space, would a non-commutative 

algebra give rise to some kind of non-commutative space? 

In other words, 

NON COMMUTATIVE ALGEBRA ?

NON 

COMMUTATIVE SPACE 

The answer is yes, and unsurprisingly, non-commutative 

spaces play a crucial role in quantum theory. 

The non-commutative geometry of interest in this paper 

retains the commutativity of functions i.e 

 𝑓𝑔  𝑥 = 𝑓 𝑥 𝑔 𝑥 = 𝑔 𝑥 𝑓 𝑥 = (𝑔𝑓)(𝑥)    (2.1) 

but non-commutativity is introduced between functions 

and differentials. For instance, the function 𝑓  and the 

differential 𝑑𝑔 need not commute in general, i.e 

  𝑓(𝑔) ≠  𝑑𝑔 𝑓. 

Although this is already a very specialized arena of non-

commutative geometry, there is quite a vast array of 
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applications that result from this simple extension of the 

standard calculus.  

A striking observation is provided in [10] which shows 

that non commutative geometry naturally accommodates a 

slight generalization of stochastic calculus. Herein lies the 

applicability to mathematical finance. 

For instance the basic class of objects required to build 

financial models such as the Black-Scholes equations are, 

the scalar functions representing the values of options V, 

trade-ables S, and numeraires B, as well as functions  for 

the number of units 𝛼, ∆, 𝛽, respectively of each being held 

in a portfolio of total value 𝜋 . Next, there are 

corresponding differentials 𝑑𝑉, 𝑑𝑆, 𝑑𝐵, 𝑑𝛼, 𝑑∆, 𝑑𝛽 𝑎𝑛𝑑 𝑑𝜋. 

It is helpful to think of differentials as constituting a class 

of objects separate from that of scalar functions. To make 

the distinction between scalar functions and differentials 

as clear as possible, the former will be referred to as 0 – 

forms, while the latter will be referred to as 1 – forms. 

Hence, the Black-Scholes model begins with a collection 

of 0 – forms and 1 – forms.In the standard Black-Scholes 

model, each of the 1 – forms may be expressed in terms of 

a Wiener process𝑑𝑊 and time𝑑𝑡. For example, the spot 

price of a trade able asset is often modeled via. 

 𝑑𝑆 = 𝑆 𝜎𝑑𝑊 + 𝜇𝑑𝑡 .                             (2.2) 

In this way, 1 – forms may be thought of as constituting 

a two-dimensional vector space with bases   𝑑𝑊, 𝑑𝑡 . 
The primary algebraic aspect of the stochastic calculus 

which differs from standard elementary calculus is in how 

two 1 – forms are multiplied. Due to linearity, it suffices to 

consider the multiplication of basic elements. In stochastic 

calculus, the multiplication is given by  

𝑑𝑊𝑑𝑊 = 𝑑𝑡, 𝑑𝑊𝑑𝑡 = 𝑑𝑡𝑑𝑊 = 0, 𝑑𝑡𝑑𝑡 = 0 

As a result, 

𝑑𝑆𝑑𝑆 = 𝜎2𝑆2𝑑𝑡  

follows directly from the rules for multiplication. One 

may then derive the Ito formula 

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

𝜕𝑉

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝑉

𝜕𝑆2
𝑑𝑆𝑑𝑆 

     =
𝜕𝑦

𝜕𝑥
𝑑𝑆 +  

𝜕𝑦

𝜕𝑥
+

𝜎2𝑆2

2

𝜕2𝑉

𝜕𝑆2 𝑑𝑡,                (2.3) 

from which standard self-financing and no-arbitrate 

arguments lead to the Black-Scholes equations. The 

Geometric Brownian Motion is the classical stochastic 

process that is used to describe stock price dynamics in a 

weakly efficient market. More concretely, it obeys the 

linear SDE 

𝑑𝑆 𝑡 = 𝜇𝑆 𝑡 𝑑𝑡 + 𝜎𝑆 𝑡 𝑑𝐵 𝑡 , 𝑡 ≥ 0.         (2.4)  

With 𝑆(0) > 0.Here𝑆(𝑡)is the price of the risky security 

at time𝑡, 𝜇 is the appreciation rate of the price, and𝜎 is the 

volatility. It is well-known that the logarithm of 𝑆grows 

linearly in the long-run. The increments of log 𝑆 are 

stationary and Gaussian, which is a consequence of the 

driving Brownian motion. That is for a fixed time lag 𝑕, 

𝑟𝑕 𝑡 + 𝑕 ≔ log
𝑆 𝑡 + 𝑕 

𝑆 𝑡 
 

                 =  𝜇 −
1

2
𝜎2 𝑕 + 𝜎 𝐵 𝑡 + 𝑕 − 𝐵(𝑡)   

is Gaussian distributed.  

Clearly 𝑟𝑕 𝑡 + 𝑕   is ℱ𝐵 𝑡 ,  - independent, because 𝐵 

has independent increments. Therefore if  ℱ𝐵 𝑡 = ℱ𝑠 𝑡 , 
it follows that the market is weakly efficient. To see this, 

note that 𝑆  being a strong solution of (4) implies that 

ℱ𝑆 𝑡 ⊆ ℱ𝐵 𝑡 . 
On the other hand, since 

𝑙𝑜𝑔𝑆 𝑡 =  𝑙𝑜𝑔𝑆 0 +  𝜇 −
1

2
𝜎2 𝑡 +  𝜎𝐵 𝑡 , 𝑡 ≥ 0 

we can rearrange for B in terms of S to get that  ℱ𝐵 𝑡 ⊆
ℱ𝑆 𝑡  and hence   ℱ𝐵 𝑡 = ℱ𝑆 𝑡 . 

Due to this reason, equation (2.4) has been used to 

model stock price evolution under the classic efficient 

market hypothesis.  

In order to reflect the phenomenon of occasional weak 

inefficiency resulting from feedback strategies widely 

applied by investors, in Appleby etal., SDEs whose 

solutions obey the Law of iterated logarithm are applied to 

inefficient financial market models. More precisely, a 

semi-martingale 𝑋 ,which is slightly drift-perturbed and 

obeys the Law of the iterated Logarithm is introduced into 

equation (2.4) as the driving semi-martingale instead of 

Brownian motion. It is shown that if a process 𝑆 satisfies 

 𝑑𝑆∗ 𝑡 = 𝜇𝑆∗ 𝑡 𝑑𝑡 +  𝑆∗ 𝑡 𝑑𝑋 𝑡 , 𝑡 ≥ 0, 𝑆∗ 0 > 0,  (2.5) 

then 𝑆 preserves some of the main characteristics of the 

standard Geometric Brownian Motion 𝑆. 

Remark 2.1 (Osu, [11]): Assume 𝑆𝑡  follows instead the 

Orntsein-Uhlenbeck process, 

𝑑𝑆𝑡 = −𝑎𝑆𝑡𝑑𝑡 +  𝜎𝑑𝑊𝑡     (2.6) 

with explicit function 

𝑆𝑡 = 𝑒−𝑎𝑡𝑆𝑜 +  𝜎𝑒−𝑎𝑡  𝑒−𝑎𝑥  𝑑𝑊𝑥
𝑡

𝑜
.  (2.7) 

Applying the Duhamel principle, equation (2.7) has a 

Gaussian distribution with mean 𝑒−𝑎𝑡𝑆𝑜  and variance 

given by 

𝜎2 𝑡 = 𝜎2𝑒−2𝑎𝑡  𝑒𝑧𝑎𝑥  𝑑𝑥
𝑡

𝑜

 

=
𝜎2𝑒−2𝑎𝑡

2𝑎
 𝑒2𝑎𝑡 + 1 𝑜

𝑡  

=
𝜎2

2𝑎
 1 +  𝑒−2𝑎𝑡  .    (2.8) 

Hence (2.8) has a Markov process with stationary 

transition probability densities 

𝐹 𝑡, 𝑆, 𝑦 =
1

𝜎 𝑡  2𝜋
 𝑒𝑥𝑝 

 – 𝑦−𝑒−𝑎𝑡   

2𝜎2 𝑡 
  (2.9) 

This is particularly interesting for 𝑎 > 0 (say = 1), which 

is the stable case 

𝑎 =  lim𝑡→∞ 𝜎2  𝑡 =
𝜎2

2
             (2.10) 

and 

lim𝑡→∞ 𝐹 𝑡, 𝑠, 𝑦 =
1

 2∝𝜋
 𝑒𝑥𝑝  

−𝑦2

2𝑎
             (2.11) 

Then as 𝑡 → ∞, 𝑆𝑡  𝑁→
𝑑  𝑜,

𝜎2

2
 . 

Lemma 2.1: Let 𝛿 > 2 and 𝑌  be the unique continuous 

adapted process which obeys (2.5). Then 𝑌 is a positive 

process a.s., and satisfies  

limsup𝑡→∞

𝑌 𝑡 

 2𝑡 log 𝑙𝑜𝑔  𝑡
= 𝜎  𝑎. 𝑠             (2.12) 

and 



 

 

 

Copyright © 2016 IJASM, All right reserved 

   12 

International Journal of Applied Science and Mathematics 

Volume 3, Issue 1, ISSN (Online): 2394-2894 
 

liminf𝑡→∞

𝑙𝑜𝑔
𝑌(𝑡)

 𝑡

log 𝑙𝑜𝑔  𝑡
= −

1

𝛿−2
  𝑎. 𝑠.                           (2.13) 

Proof: let 𝑍 𝑡 = 𝑌 𝑡 2. By Ito’s rule, we get 

𝑑𝑍 𝑡 = 𝜎2𝛿𝑑𝑡 + 2 𝑍 𝑡 𝜎𝑑𝐵  𝑡 , 𝑡 ≥ 0 

with 𝑍 0 = 𝑦0,
2  where by Doob’s martingale 

representation theorem, we have replaced the original 

Brownian motion B by 𝐵  in an extended probability space. 

Therefore, 

𝑍 𝑒𝑡 − 1 = 𝑦0
2 +  𝜎2𝛿𝑑𝑠 +  2 𝑍 𝑠 

𝑒 𝑡−1

0

 𝜎𝑑𝐵  𝑠 
𝑒 𝑡−1

0

 

= 𝑦0
2 +  𝜎2𝛿𝑒𝑠𝑑𝑠 +  2𝜎

1

0

 𝑧 𝑒𝑠 − 1 𝑒
𝑠

2𝑑𝑊 𝑠 ,
1

0

 

Where W is again another Brownian motion. If 𝑍  𝑡 =
𝑍 𝑒𝑡 − 1 , then 

𝑑𝑍  𝑡 = 𝜎2𝛿𝑒𝑡𝑑𝑡 + 2𝜎 𝑍  𝑡 𝑒
1

2𝑑𝑊 𝑡 , 𝑡 ≥ 0. 

If 𝐻 𝑡 : =  𝑒−𝑡𝑍  𝑡 , 𝑡𝑕𝑒𝑛 𝐻 𝑂 > 0 𝑎𝑛𝑑 𝐻 𝑜𝑏𝑒𝑦𝑠 

𝑑𝐻 𝑡 =   𝜎2𝛿 − 𝐻 𝑡  𝑑𝑡 + 2𝜎 𝐻 𝑡 𝑑𝑊 𝑡 , 𝑡 ≥ 0. 

(2.14) 

Therefore by Lemma 2.1, we have 

limsup𝑡→∞

𝐻(𝑡)

2 log 𝑡
=  𝜎2, 𝑎. 𝑠.               (2.15) 

Using the definition of 𝑌 in terms of 𝐻 and 𝑍 we obtain 

(21.2) 

To prove (21.3), consider the transformation 𝐻∗ 𝑡 ∶ =
1

𝐻 𝑡 
. 𝐻∗  is well defined, 𝑎. 𝑠 . positive, and by Ito’s rule 

obeys. 

𝑑𝐻∗ 𝑡 =    4𝜎2 − 𝜎2𝛿 𝐻∗
2 𝑡 + 𝐻∗ 𝑡   𝑑𝑡

− 2𝜎
𝐻∗

2 𝑡 

 𝐻∗ 𝑡 
𝑑𝑊 𝑡 , 𝑡 ≥ 0. 

It is easy to show that the scale function of 𝐻∗ satisfies 

𝑆𝐻∗ 𝑥 =  𝑘1  𝑦
𝛿− 4

2

𝑥

1

𝑒
1

2𝜎2𝑦𝑑𝑦, 𝑥 ∈ ℝ, 

for some positive constant 𝐾1 ,  and 𝐻∗  obeys all the 

conditions of Motoo’s theorem. By L’Hôpital’s rule, for 

some positive constant 𝐾2 , we have 

lim
𝑥→ ∞ 

𝑆𝐻∗ 𝑥 

𝑥𝛿−2

2

= 𝐾2. 

Let 𝑕1 𝑡 = 𝑡2/(𝛿−2). Then for some 𝑡1 > 0, 

 1

𝑆𝐻 ∗ 𝑕1 𝑡  
 𝑑𝑡  ≥

∞

𝑡1
 2

𝐾2𝑡
 𝑑𝑡  = ∞

∞

𝑡1
. 

Hence 

limsup
𝑡→∞

𝐻∗ 𝑡 
 2

𝑡𝛿−2

≥ 1, 𝑎. 𝑠 

On the other hand, for 𝜖 ∈  0, 𝛿 − 2 , 

lim
𝑥→∞

𝑆𝐻∗
 𝑥 

𝑥
𝛿−2−∈

2

= ∞. 

Let 𝑕2 𝑡 = 𝑡2/(𝛿−2−∈−𝜃), 𝑤𝑕𝑒𝑟𝑒 𝜃 ∈  0, 𝛿 − 2 − 𝜖 . 

Then for some 𝑡2 > 0, we get 

 1

𝑆𝐻 ∗ 𝑕2 𝑡  
 𝑑𝑡  ≤

∞

𝑡2
 2

𝑡
𝛿−2−𝜖

𝛿−2−𝜖−𝜃

 𝑑𝑡  < ∞
∞

𝑡2
. 

𝑎. 𝑠on an 𝑎. 𝑠  event Ω𝜖,𝜃 , ∶=  Ω𝜖 ∩ Ω𝜃,  where Ω𝜖  and Ω𝜃  

are both a.s. events. From this by letting 𝜖 ↓ 0 and 𝜃 ↓ 0 

through rational numbers, it can be deduced that 

limsup𝑡→∞

𝑙𝑜𝑔𝐻∗ 𝑡 

log 𝑡
=  

2

𝛿−2
a.s  on∩𝜖,𝜃∈ℚ Ωϵ,θ 

Using the relation between 𝐻∗ and Y, we get the desired 

result  (2.13). 

 

III. NON-COMMUTATIVE MARTINGALES 
 

We consider  𝑀𝑛 𝑛≥1:  an increasing sequence of von 

Neumann subalgebras 𝑀  such that ⋃𝑛𝑀𝑛 is 𝑤∗  dense in 

𝑀. This is called a filtration of 𝑀. ∑𝑛 = ∑ ./𝑀𝑛/  is 

conditional expectation relative to 𝑀𝑛 . Note that 

∑𝑚 ∘ ∑𝑛 = ∑𝑛 ∘ ∑𝑚 = ∑min ⁡(𝑚,𝑛)       ∀ 𝑚, 𝑛 ≥ 1. 

Definition: 
A sequence 𝑥 =  𝑥𝑛 ⊂  𝐿1 𝑀  is called a martingale 

with respect to  𝑀𝑛  (or non commutative martingales) if 

∑𝑛 𝑥𝑛+1 = 𝑥𝑛  for every 𝑛 ≥ 1.  If in addition 𝑥𝑛 ∈
𝐿𝑝 𝑀  with 𝑝 ≥ 1, 𝑥  is called an 𝐿𝑃~  martingale with 

respect to  𝑀𝑛 . In this case we set 

 𝑥 𝑝 =
𝑠𝑢𝑝

𝑛 ≥ 1
 𝑥𝑛 𝑝  

If  𝑥 𝑝 < ∞, 𝑥   is called a bounded 𝐿𝑝 −  martingale. 

Let 𝑥 =  𝑥𝑛  be a martingale with respect to  𝑀𝑛 . Define 

𝑑𝑥𝑛 =  𝑥𝑛 − 𝑥𝑛−1  for 𝑛 ≥ 1  with the convention that 

𝑥−1 = 0, and let 𝑑𝑥 =  𝑑𝑥𝑛  𝑛≥1 . The 𝑑𝑥𝑛  are called the 

martingale differences of 𝑥,  and 𝑑𝑥  the martingale 

difference sequence of 𝑥. 

Theorem 3.1  
Let 𝑥 =   𝑥𝑛  be a non-commutative martingale with 

respect to  𝑀𝑛 . Define 𝑑𝑥𝑛 = 𝑥𝑛 − 𝑥𝑛−1  for 𝑛 ≥ 1 with 

the convention that 𝑥−1 = 0,  and let 𝑑𝑥 =
 𝑑𝑥𝑛 𝑛≥1 .Suppose𝑆𝑛→∞

2  and 𝑑𝑛 ∞  ≤ ∝𝑛 𝑆𝑛/𝑢𝑛   for some 

sequence  ∝𝑖  of positive numbers such that ∝𝑛⟶ 𝑜  as 

𝑛 ⟶ ∞. 
Then  

limsup𝑛⟶∞

𝑥𝑛

𝑆𝑛𝑈𝑛
 ≤  2. 

Proof: Let 𝑋  be the unique continuous adapted process 

satisfying a stochastic differential equation. If there exists 

a positive real number 𝑝 such that  

∀ 𝑥, 𝑡  ∈  ℝ × ℝ+, 𝑥𝑓 𝑥, 𝑡 ≤ 𝑝   (3.1) 

then 

limsup 
𝑡⟶∞

  𝑋 𝑡   

 2𝑡𝑙𝑜𝑔𝑙𝑜𝑔  𝑡
 ≤    𝜎 ,    𝑎. 𝑠    (3.2) 

and 

limsup
𝑡⟶∞

 
𝑋2 𝑆 

 1+𝑆 2 𝑑𝑠
𝑡
𝑜

log 𝑡
   ≤ 2𝑝 + 𝜎2, 𝑎. 𝑠  (3.3) 

without loss of generality, we can choose 𝑝 > 𝜎2

2 .  Then 

by Itô’s rule 

𝑑𝑋2 𝑡 =   2𝑋 𝑡 𝑓 (𝑋 𝑡 , 𝑡) + 𝜎2  𝑑𝑡 + 2𝑋 𝑡 𝜎𝑑𝐵 𝑡 . 

Let 𝑍 𝑡 = 𝑋2 𝑡 , 𝑡 ≥ 0.  Define 𝛾 𝑥 =  𝑥   𝑥   . For 

𝑥 ≠ 0 and 𝛾 0 =  1. 
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Then 

𝑊 𝑡 : =   𝛾 𝑋 𝑠 𝑑 𝐵(𝑠) 
𝑡

𝑜

 

is a standard Brownian motion with respect to ℱ𝐵 , and we 

have 

𝑑𝑍 𝑡 =   2𝑋 𝑡 𝑓(𝑋 𝑡 , 𝑡 +  𝜎2) 𝑑𝑡 + 2𝜎  𝑍 𝑡 𝑑𝑊(𝑡). 

Now consider the process 𝑋𝑢  defined by 

𝑑𝑋𝑢 𝑡 =   2𝑝 +  𝜎2  𝑑𝑡 + 2𝜎   𝑋𝑢(𝑡)   𝑑𝑊(𝑡),   (3.4) 

with 𝑋𝑢 𝑜 > 𝑋2 𝑜 .  Arguing as in the forthcoming 

theorem 1.2 it can be shown that 𝑋𝑢 𝑡 ≥ 𝑜 for all  𝑡 ≥ 𝑜 

a.s. This means that the absolute values in the diffusion 

coefficient in (1.4) can be omitted. Hence, by the 

comparison theorem (see [8]),  𝑋𝑢 𝑡 ≥  𝑋2(𝑡)  for all 
 𝑡 ≥ 𝑜 a.s. From the proof of Lemma 2.1 we know that  

𝑃 lim𝑡→∞ 𝑋𝑢 𝑡 = ∞ = 1. 

Moreover, 𝑋𝑢  obeys lim𝑡→∞

𝑋𝑢  𝑡 

2 𝑡 log 𝑙𝑜𝑡  𝑡
≤ 𝜎 a.s.  

From remark  2.1    

.2lim 


nn

n

t xu

x
 

Theorem 3.2: Let 𝑥 =   𝑥𝑛  be a non-commutative 

martingale with respect to 𝑀𝑛 . Define 𝑑𝑥𝑛 = 𝑥𝑛 − 𝑥𝑛−1 

for 𝑛 ≥ 1 with the convention that 𝑥−1 = 0,  and 

let 𝑑𝑥𝑛 =  𝑑𝑥𝑛 𝑛≥1 .  Suppose 𝑆𝑛
2 → 𝑜  and   𝑑𝑛 ∞ ≤

 ∝𝑛𝑆𝑛/𝑢𝑛 for some sequence. 

 ∝𝑖  of positive numbers such that ∝𝑛→ 𝑜 as 𝑛 → ∞. 

Then 

liminf
𝑛→∞

𝑥𝑛

𝑆𝑛𝑈𝑛

  ≥ −1 

Proof: Let 𝑋  be the unique continous adapted process 

satisfying a stochastic differential equation. If there exists 

a real number 𝜇 such that 
𝑖𝑛𝑓

 𝑥, 𝑡 𝜖ℝ × ℝ+ 𝑥𝑓 𝑥, 𝑡 = 𝜇 > −𝜎2

2
   (3.5) 

then 

limsup
𝑡→∞

 𝑋 (𝑡)  

 2𝑡𝑙𝑜𝑔𝑙𝑜𝑔𝑡
  ≥  

 𝜎 , 𝑎. 𝑠.                    
                                                (3.6)

  

Moreover, 

liminf
𝑡→∞

 𝑋2 𝑆 

(1+𝑆)2 𝑑𝑠
𝑡

𝑜

log 𝑡
  ≥ 2𝜇 + 𝜎2, 𝑎. 𝑠.                    (3.7) 

We begin with a change in both time and scale on 𝑋 to 

transform it to a process which can be compared with a 

stationary process. 

Let 

𝑌 𝑡 =  ℓ−𝑡𝑋  
1

2
 ℓ2𝑡−1   

By Itô’s rule, it can be shown that for 𝑡 ≥ 𝑜 

𝑑𝑌2 𝑡 =   −2𝑌2 𝑡 + 2𝑌2 𝑡 𝑒𝑡𝑓  𝑌 𝑡 𝑒𝑡 ,
1

2
 𝑒2𝑡 − 1  

+ 𝜎2 𝑑𝑡 + 2𝜎 𝑌2(𝑡) 𝑑𝑤 𝑡 , 

with  𝑌2 𝑜 =  𝑥𝑜
2  where 𝑊  is the ℱ𝐵 − adapted standard 

Brownian motion introduced in the proof of Theorem 1.1. 

Consider the processes governed by the following two 

options; 

𝑑𝑌1 𝑡 =  −2𝑌1 𝑡 +  2𝜇 + 𝜎2  𝑑𝑡 + 2𝜎    𝑌1(𝑡)   𝑑𝑤(𝑡)  

(3.8) 

𝑑𝑌2 𝑡 =  −2𝑌2 𝑡  𝑑𝑡 +  2𝜎   𝑌2(𝑡)   𝑑𝑤 𝑡 , (3.9) 

with 𝑥𝑜
2  ≥ 𝑌1 𝑜 ≥ 𝑌2 𝑜 = 𝑜.  We estimate the 

asymptotic growth rate of 𝑌1 using Motoo’s theorem.  

By the uniqueness theorem ([8]), 𝑌2 𝑡 = 𝑜  for all 

𝑡 ≥  𝑜  a.s, for all 𝑡 ≥  𝑜 . Applying the Ikeda-Watanabe 

comparison theorem twice, we have 

𝑌2 𝑡 ≥  𝑌1 𝑡 ≥  𝑌2 𝑡 = 𝑜 for all 𝑡 ≥  𝑜 𝑎. 𝑠 

Hence, the absolute values in (3.8) can be removed. 

Now it is easy to check that a scale function and the speed 

measure of 𝑌1 are 

𝑆𝑌1 𝑥 =  𝑒
−

1

𝑟2  𝑒
𝑦

𝜎2

𝑥

1

𝑦
−

2𝜇 +𝜎2

2𝜎2 𝑑𝑦 

𝑀𝑌1 𝑑𝑥 =  1

2
𝜎2𝑒

−𝜎2

𝑟2 𝑒
𝑥

𝜎2𝑥
2𝜇 +𝜎2

2𝜎2 −1
  𝑑𝑥 respectively. 

Without loss of generality, we can choose 𝜇 ∈

  −𝜎2 2,   𝜎2 2,  . then  

𝑆𝑌1 ∞ = ∞, 𝑆𝑌1 𝑜 >  − ∞ and𝑚𝑦1 𝑜,∞ <  ∞. 

In addition, the function defined by 

𝑉𝑐 𝑥 =  𝑆𝑐
1 𝑦  

2𝑑𝑧

𝑆𝑐
1 𝑍 𝑔2(𝑍)

 𝑑𝑦, 𝑐, 𝑥  ∈ 𝐼
𝑦

𝑐

𝑥

𝑐

 

and associated with 𝑌1 satisfiers 𝑉 𝑜 < ∞. So by Feller’s 

test for explosions, 𝑌1  reaches zero within finite time on 

some event. A direct calculation confirms that 𝑀𝑌1  𝑜  =
𝑜. By the definition of an instantaneously reflecting point 

(see [12]), we conclude that zero is a reflecting barrier for 

𝑌1 , and hence 𝑌1 is an a.s recurrent process with finite 

speed measure. Thus Motoo’s theorem can be applied. 

Let 𝑕 𝑡 = 𝜎2 log 𝑡. since 𝜇 ∈   −𝜎2 2,   𝜎2 2,  . 
By L’Hopital’s rule 

lim𝑥→∞

𝑆𝑌1(𝑥)

𝑒
𝑥

𝜎2
 =  lim 𝑥 → ∞

−2𝜇 +𝜎2

2𝜎2  = 0 . 

This implies that there exists 𝑥∗> o such that for all 

𝑥 > 𝑥∗, 𝑆𝑦1 𝑥 < 𝑒𝑥 𝜎2  since 𝑕 is an increasing function, 

there exists 𝑡0> 0 such that for all  t > to , 𝑕 𝑡 > 𝑥∗  so 

𝑠𝑦1 𝑕 𝑡  < 𝑡. Hence,  
1

𝑠𝑦1 𝑕 𝑡  

∞

𝑡𝑜
 𝑑𝑡 >  

1

𝑡

∞

𝑡𝑜
 𝑑𝑡 = ∞. 

Therefore, by Motoo’s theorem 

limsup𝑡→∞      
𝑌2(𝑡)

𝑙𝑜𝑔  𝑡
 ≥ limsup𝑡→∞      

𝑌1

𝑙𝑜𝑔  𝑡
 ≥ 𝜎2 , 𝑎. 𝑠. 

 

IV. CONCLUSION 
 

We have established in here the connectivity between 

non-commutative martingales and Stochastic Differential 

Equation and have shown that this connection obeys the 

Law of Iterated Logarithm. In an on-going research we 

shall show whether or not the Kolmogorov’s growing 

condition of the Herman Winter’s LIL is possible for non-

commutative martingale with a stochastic differential 

equation obeying the Law of Iterated Logarithm (LIL). 
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