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Abstract – In the development of modern science, topology 
provide convenient and natural representations inthe 
description of many practical situations including 
architecture, biology, control.Widely application of the 
topology makes its theory more perfect. In this pa
using the metric space as a bridge into
application of compactness in calculus was studied, t
theories of compact theorem, extreme value theory,
uniform continuity theorem were perfected also.
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I.  THE CHARACTERIZATION O F 

 
The definition of compactness is given

which is not as intuitive as the connectedness
different definitions were given in history
following depicted is better than anyone else.

Definition 1[1]Let X be a topological space, if any one 
of theX open coverageA ,there is a finite sub cover,
said to compact space. 

Definition 2 Let X be a topological space,
infinite subset of X has a limit point, the topological
X is called the limit point compact space.

Definition 3[2]Invarious topological space
{ }⋯,, 21 xx  be a sequence ofX
eachneighborhood U of x , there is a positive integer 
such that Uxn ∈ for all Nn > , that is said the sequence of

{ }⋯,, 21 xx convergent to the limit pointx

In R and 2R , a sequence cannot convergent to more 
than one point, but in an arbitrary space, it can.

Theorem 1[2] 

Everycompact space is a limit point compact space.
Proof. LetX be a compact space.Given

proof that ifA is infinite set,A must have limit points. The 
following is a proof of its inverse proposition: if the 
does not have the limit point, then the 
set. 

Assume thatA does not have a limit point. Then
contains all its limit points,A  is a closed set.
for each Aa∈ we can choose a neighborhood 

such that aU intersectsA in the pointa

X is covered by the open set AX − and the open sets

beingcompact, it can be covered by finitely many of
sets. Since AX − does not intersectA
contains only one point ofA , the set A must be finite.

In the metric space, there is no difference
two definitions of compactness.so we can draw the 
following theorem: 
Theorem 2  

In metric space, compact space is equivalent to
point compact space. 
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II.  THE APPLICATION O

CALCULUS
 
When you submit your final version, after 

has been accepted, prepare 
including figures andtables. 

Theorem 3[2] Compact metric space are abound.
Proof. Let( )ρ,X  be compact 

of sets ( ){ }XxxB ∈|1, by spherical neighborhoods is an 

open covering of X , and it has a finite sub cover,
( ) ({ 1,,1, 21 xBxB

Let ( ){ ,1|,max ≤= jixxM jiρ
If Xyx ∈, , then existedi

( )1,ixBx∈ and ( )1,jxBy∈ . 

So ( ) ( ) ( xxxxyx jii +≤ ,,, ρρρ
Therefore, every compact subset in the metric space is a 

bounded subset. In particular, 
bounded. 

Theorem 4 (sequential convergence) 
Let X  be a topological space

subsequence of convergence. 
Theorem 4’ [3] (compact theorem) 
In real space, any bounded sequence must have a 

subsequence of convergence. 
Theorem 5 (Extreme value theorem
Let YXf →: is continuous, where 

ordered set in the ordered topological. If 
then existed points c and 

( ) ( ) ( )dfxfcf ≤≤ for everyx∈
Proof. Since f is continuous and

set ( )XfA = is compact. We show that 

element M a smallest element
( )cfm= and ( )dfM = for some points of 

If A has no largest element, then collection
( ){ aa∞− |,

forms an open covering ofA
finite sub collection( ){ a ,, 1∞− ⋯

the largest of the elementsa1

none of these sets , contrary to the fact that they cover 
Theorem5’ (Extreme value theorem)
Let [ ] Rbaf →,: is continuous, then there exists two 

elements ],[, badc ∈ such that 

],[ bax∈ . 
Theorem 6 (Uniform continuity theorem)
Let YXf →: be a continuous map from the

metric space( )XdX , to metric space

uniformly continuous. 
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Proof. Given 0>ε ,consider an open covering of

consider an open covering ofconsider an open covering of
Y by balls ( )2/,εyB of radius 2/ε .Let

covering of X by the inverse image of these balls under
f .Let δ be the Lebesguenumber of open covering 

A .Then if 1x and 2x are two points of 

( ) δ<21, xxdX ,the two point set{ 21, xx

than δ ,so that its image ( ) ( ){ }21 , xfxf contains some open 

balls ( )2/,, εyB ,then ( ) ( )( ) <21 , xfxfdY

Theorem 6’(Uniform Continuity Theorem)
If Rbaf →],[: is continuous, then given 

existed 0>δ such that ( ) ( ) ε<− 21 xfxf

element 1x and 2x satisfied δ<− 21 xx . 

 
III.  CALCULUS PROMOTE THE 

DEVELOPMENT OF TOPOLOGY
 
A compact space is not always sequence compact space. 

For this kind of problem, we usually verify the method by 
listing counter example to validate the method. Therefore, 
For example, unilateral continuous periodic function, we 
found, providing support to this theory fro
view of the calculus. 

Theorem 7[6] Let f  be a single continuous periodic 

function defined on the real number, and
0>T for any positivepandq , qp <<0

(0) ( / )Tf f p q≠ . For any fixed positive integer

function sequence is defined as ( ) =xfn

any sub sequence { }nf ,there have infinite divergence

points in the interval[ ]T,0 . 
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accordance with the periodic extension.

continuous function with a period of 1,then existed 

2=q such that ( ) 1
2

1
00 =







≠= ff .We can take 

and define function sequence ( )xfn =
infinite divergence point. Based on this, a compact space 
is not always sequence compact space. 
 

IV.  CONCLUSION
 
Compactness is not only in topological spaces with 

good properties, but it can be maintained certain 
conditions. Therefore, compactness can be as proof of a 
tool in many existing theorems, such a
provide examples-compact space is not sequentially 
compact-for topology. Of course, the more complex 
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ONCLUSION  

Compactness is not only in topological spaces with 
good properties, but it can be maintained certain 
conditions. Therefore, compactness can be as proof of a 
tool in many existing theorems, such as Calculus can 

ce is not sequentially 
for topology. Of course, the more complex 

application, we will use the elicitation of topology to make 
innovations in other unknown field.
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