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Abstract — Most meteorological time series are lor-range
auto-correlated and crosseorrelated. Due to the presence ¢
highly periodic trends, these correlations are ficult to
quantify and, very often, spurious correlations arereported.
In order to eliminate the seasonal trends of meteorologici
data, we apply the detrending technique with varyig order |
of the polynomial and compute theDCCA cross-correlation
coefficients. Furthermore, for the statistical properties of
DCCA cross-correlation coefficients between those detrende
meteorological time series, we performed the statisal test
by introducing the crossecorrelation coefficients computed
from a thousand number of uncorrelated Gaussian time
series as null hypothesis. In the 95% significanckevel, our
analysis results show that the crosserrelation coefficients
are very sensitive to the order of the polynomialAlso, the
spurious correlations gradually decrese as the order of the
polynomial increases. The utility of this new approah is
illustrated from two pairs of selected meteorological tim
series, which are recorded at ChedWon and Seoul, anc
from a pair of oceanographic signals recorded at Hz-woon-
dae near the south sea of Korean peninst.

Keywords — DCCA Coefficient, DFA, Meteorological Time
Series, Detrending Method.

. INTRODUCTION

Noisy signals in many realorld systems are record
simultaneously and display lomgnge aut-correlations as
well as crossorrelations. These correlations play
central role in a variety of disciplines such as/gits,
physiology, seismology, finance, meteorology, andoa
[1-4]. To gain an insight into the correlation dynamide
standard methods such as powerctral density and
correlation analysis were developed and used wi
However, these standard methods assume statioaadl
linearity in data and have limitations when appliedhe
real-world data, being commonly natationary and ofte
exhibiting peiodicity. Thus, detrending is essential
properly analyze the reaorld time series becau
detrending prevents a time series being correlétenh
correlation is present, and reveals a genuine ledioa if

correlations exist. In general, detrenc is applied to data

locally or globally. When applied locally, DFA (detded
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fluctuation analysis) quantifies a single scaliraggmetel
representing the longange aut-correlation properties of
a signal [5-F while DCCA (detrended cro-correlation
anaysis) provides a single scaling parameter represe
the long-range crosserrelation properties between t
non-stationary signals [§,9The application of a globi
detrending does not guarantee that we can obte
stationary signal because most ccex signals are non-
stationary. Also, the local linear detrending meth® not
suitable for obtaining a stationary signal fromgaoral
noisy signals with highly nonlinear trends accomedrby
periodic trends. In order to overcome the limitas
mentione above, different extensions of DFA have b
proposed which locally subtract hig-order polynomials
from the original signal together with the detredh
moving average (DMA) 10,17 and multifractal DFA
[12,13].

In the crossorrelation analysis, thDCCA method is
very useful in detecting and quantifying po-law cross-
correlations in many realorld nor-stationary signals.
However, the DCCA single scaling parameter is
suitable for quantifying the level of cr«correlations.
Also, the well knowpearson correlation coefficient is r
robust and oftemmisleading if outliers are present, as
realworld data characterized by a high degree of-
stationarity. To overcome these limitations, a neas«-
correlation coefficient based on DCCA was pised by
G. F. Zebende [14Now if we have two time serie{x}

and {x'}, we can compute the detrended varia
function FZ.,(n) and the detrended covariance funct

FZ2..(n) by applying DFAand DCCA methods to the
data. This newoefficient is defined as the ratio betwe
the detrended covariance functicFZ.,(n) and the

detrended variance functi®if., (n), i.e.,
Focea(n)
DZFA(X‘} (n) FIDZFA{X") (n)

Here, 0., is a dimensionless coefficient tt

Pocea(N) =
IF (1)
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Fig. 1. The plots of temperature (a) and humidity (b)are gmé=d. "he maximum values are denoted by a blue solid
and the difference of successive maximum valuden®ted by a red dotted line. fear periodic trend is observed
the maximum values.he data set is recorded at Cheol-won.

ranges betweerl< oy, < 1.

In our work, we extend the DCCA coefficient
applying the detrending technique with varying ordé
the polynonml. The detrending function with a higr
order of the polynomial is very useful to elimingieriodic
trends, which are present in most meteorologicale
series, without affecting the correlation propedty the
signal [15]. In the following, we perfor the comparativ
study between the local linear detrending and theal
nonlinear detrendingAlso, we examine the utility of tr
local nonlinear detrending method by performings
study to both pairs of signals, namely the maxinuahuies
of air tempeature and air relative humidity, and 1
successive difference of those maximum values
addition, weinclude the oceanographic signewhich are
differences of salinity and water temperature rded
every 30 minutes.

The organization of this paper &s follows. In the
succeedingection, we give a brief description of data
discuss the methodology in section lll. Our resuts
presented in section IV and, in the firsgiction, we give a
summary and concluding remarks.

Il. DATA

If The meteorologicaldata under consideration ¢
composed of a pair of air temperature and rel
humidity over 2 stations in theo8th Korea. They ar
recorded hourly over 8 years and show a high degf
periodicity as in figure 1. Ithis work, we extract the dai
maximum values of air temperature and relative hurmi

from the hourly recorded data covering the perioanfO1
January 2003 to 31 December 2010, and analyzewibn
datasets; one is the daily maximum values of

temperaturg x} and reléive humidity{x';}, and the other
is the successive differences of those maximumes
given as{x,, —x} and{x',,—x'}, respectively. As for
the oceanographic signals, we computed the diféererf
water temperare and salinity recorded every 30 mint
and applied the highexrder detrending method to the

[1l. METHODOLOGY

In time series analysis there are some -known
methods to use. Among them, the most frequenthd
method is the DFA to provide a reonship between

Foea(n) (root mean square fluctuation) and the < n,

exhibiting a power-lawF,., (n) On” where a is the
long-range aut@orrelation scaling exponent. As
generalization ofthe DFA method, B. Podobnik et
proposed the DCCA method to investigate pclaw
crosseorrelations  between different  simultaneot
recorded time serign the presence of n-stationarity [8].
Thus, for two time series of equal length N, we pate

k k
two integrated signaly, = > x andy', => X' , where
i=1 i=1

k=1,...,N. And then, we divide the entire time ser
into N-n overlapping segments, each contair
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Fig. 2. The modified DCCA crossrrelation oefficients are presented for the maximum signblsraemperature an

relative humidity. For the linear detrend (orderl =1), p,...(N,1)exhibits a strongly positive crc-correlation but, as
the fitting polynomial ordeincreases, the DCCA coefficient decreases. Thisiigalies that a strong correlation is ¢
to the periodic trend present in both temperatacefaumidity signals. Above the ord =6, there is no clear
dependence on the fitting polymial order. Tle data set is recorded at Ct-won.

n values. For both time series, in each segmentstiaats
ati and ends at-n-1, we define the local trend y, ; and

¥'.i» to be the ordinate of a linear least squaresdistly,

we define the detrended walk as the difference eéeb
the original walk and the local trend, that y, - ¥, and

y'~Y' - Next, we calculate theovériance of the
residuals in each segment defined as

n+i-1
fooca(Mi) = 1 Z(yk V)V Y'i)
NS 2)
wherei denotes the segment index. Finally, we can ot
the detrended covariance function by summing ove
overlappingN —n segments of size

1 & .

FDZCCA(n) = z szCCA(nlI)
(N-n) = 3)

For a singular time seriegy, =y',), the detrended
covariance F2..,(n) reduces to the detrended varia

FZ,(n) used in the DFA method. Tse variance and

covariance functions are used to define the DCQ¥s¢-
correlation coefficient expressed in Equation
For this new crosserrelation coefficient, B. Podobn

et al. derived that the Caucliyequality, —1< ppcca <1,

holds for a standard varian-covariance approach, and
then for a detrending approach [16]. Also, to tekether
the crosszorrelations are genuine (statistically signifige
or not, the authors carried out the statisticat tmsd
calculated critical pointgo, (N, n) for the 95% confidence

level defined such that the integral betw«—p.(N,n)

and o. (N, n) is equal to 0.95. Thus, the rangeoycc,

within which the crossorrelations can be consider
statstically significant, is determined. In this worke do
the same statistical test and determine the neticalr
pointsp. (N,n,l), which are also dependent of the orl

of the polynomial in addition to the length of mé serie:

N and the segment siZa.

Lastly, the DFA and the DCCA methods are not sigt
for complex time series with highly nonlinear tre
accompanied by periodic trends. D. Horvatic et
proposed a DCCA method with varying or of the
polynomial fit [15]. This higher order fitting appaich was
shown not to affect correlation properties even nitee
polynomial order values are very large. The authested
the validity of their approach by applying the hig-order
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Fig. 3. The modified DCCA crossrrelation coefficients are presented for the sasive differences of maximum .
temperature and relative humidity. Sinche successive differencing eliminates the periodind present in thoriginal
signals, the dependenoa the polynomial order is not clear. However,tfor large scale size, a hig-order polynomial
order is needed to well detrend the lgéagm periodic trend. Téhdata set is recorded at Ct-won.

polynomial fitting to two artificial time series gerated IV. RESULTS
from a periodic twocomponent fractionally autoregress
integrated moving average (ARFIMA) process [17, In the analysis, we investigate both the maximuines
ol (2. and the difference between successive maximum sy
Z :|:zan(p1)zi—nj|+AlS|r{_lJ+,7i applying the varying order of the fitting polynorian
=1 T (4) order to examine the relationship between the sxiat n

w 27 of a segment and the polynomial or |, we set up the
Z = Zan(pz)z'i_n + A sin —i |[+7, scale size set and the fitting order set as foli
n=1 T2 (5) n={20, 30, 60,90,120,150, 300} <: 6)
Here, 7, is shared betweerz, ard z';, in order to 1={1.2,4,6,8,10,12,14,16} o
enable cross-correlations, (T, ) is the sinusoidal periol Here, all the components of the fitting order | are
) ' 1102 ' _ Inusol p_ 100 appliedto each component of the scale sizin. Now, we
Aand A, are two sinusoidal amplitudes, ¢ &,(p) is @ modify the equations (2) and (3) by replacing timedr
statistical weight defined | local trend ¥, with the polynomial local trer y, () .

a,(0) =T (n-p)/(T(-p)F (1+n)), where I denotes the Then, the local detrended varianand covariance are
Gamma function angb is a parameter ranging fro —-0.5 given as follows:

n+i-1

to 0.5. According to the work dD. Horvatic et al. [15] 2 1 ~ L~
the detrending methodwith varying order of th focea(nii31) =ﬁ Z(yk =Y Y Y'i (1)
polynomial well eliminates the periodic trend ¢ . « . )
preserves the inherent cromsrelation between tw  1Nhis local detrended covariance reduces to
signals. Importantly, the polynomial ori | is increasing détrended variance when two signals are < y, =y’ .
with the segment size In our work, we apply all possib ) 1 ., .

orders of the polynomial to the segment with scigen  Focca(M!) =m; focea(niisl)

and examine the dependency of the DCCA « (8)
correlation coefficientpo(N,n,l) on the orde | of the
polynomial.
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Fig. 4. The modified DCCA crossrrelation coefficients are presentwith the critical points, for the success
differences of maximum air temperature and relativenidity. For maximum values (a), a strong positisros-
correlation seems to be only due to the periodindr At the higher order of polynomial fit, we find a negatige no
crosseorrelation over the scale range. However, fordifference signals (b), the cr-correlation under the linear le:
square fitting is statistically insignificant andt the higher orderf polynomial fit, the negative crao-correlation is
statistically robust. Tédata set is recorded at Ct-won.
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Fig. 5. The modified DCCA crossrrelation coefficients are presentwith the critical points, for the success
differences salinity andvater temperature. At the higher order of polyndnfia we find a clear negative crc-
correlation over the whole scale range. Howevaritie linear detrending fit, the crc-correlation is unclear in the lor
scale region.

By summing all local deénded covariance ar the modified DCCA crosserrelation coefficients, whic

variance, we obtain the detrended variance andrieoe
dependent on the fitting polynomial ordl. Then, the
modified DCCA cross-coefficienp(N, n,l) is defined as

FDZCCA(n'I)
DZFA{xi} (n’ I ) FDZFA{ X'} (n1 I) (9)
Thus, we computeoy...(N,n,l) for the maximurn
signals and the difference signals. In fig. 2 ange3show

Pocea(N.n,1) =
bcca \/F

seems to be very sensitive to the fitting polyndroider.
The maximum valueignals for air temperature ai
relative humidity have a strong periodic trend andy
yield a spurious strong crossirelation when the linei
local detrending is applied. However, by applying
higherorder fitting polynomial to the original signal, \
can obtain a genuine crossrrelation not contaminated |
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temperature and air relative humidity. Tlength of a signaN =2922and the critical points are computed at ¢
confidence level for a given couple of time serga;h of which is Gaussian i.i.d. with zero meath amit variance. Th
underlined numeric denotes being statistically ificamt under a given critid point.

Segment sizd!

. .
Order Location n=2C n=30 n=60 n=90 n=12( n=150 n=300
1 Seoul 0.10¢ 0.185 0.149 0.444 0.48¢ 0.580 0.830
= Cheol-won 0.00¢ 0.083 0.254 0571 0.751 0.777 0.936
- Pc -0.071 -0.086 -0.124 -0.150 0:17¢ -0.195 -0.283
pe(N,nl =1)
+ 0c 0.07¢ 0.087 0.120 0.148 0.17¢ 0.190 0.290
L Seoul 0.13: 0.095 0.085 0.054 0-01 20.023 0.715
= Cheol-won 0.08; -0.090 -0.087 -0.052 0.041 0.082 0.848
- e -0.06( -0.069 -0.100 -0.133 0:15¢ -0.163 -0.240
pe(N,n =2)
+0c 0.05¢ 0.076 0.100 0.127 0.15¢ 0.176 0.250
4 Seoul 0.08 0.103 0.082 0.027 0-02 20.013 0.159
= Cheol-won 0.10¢ -0.103 20.125 20.193 -00° 20178 0.236
- e -0.05( -0.062 -0.086 -0.101 0:12 -0.135 -0.200
pe(Nnl =4)
+ D 0.05: 0.057 0.080 0.099 0.11: 0.143 0.197
16 Seoul 0.07¢ 0.003 0.085 0.160 017 0.133 0.055
= Cheol-won 0.04( -0.147 0.143 -0.047 0:03¢ -0.106 -0.059
- e -0.09( -0.055 -0.055 -0.063 0-06¢ -0.078 -0.101
Pc(N,n,1 =16)
+ 0 0.091 0.058 0.057 0.060 0.06¢ 0.080 0.103

Table 2. The modified DCCA cros®irelation oefficient o. (N, n,|) are presented for the successive difference sit

of maximum daily temperature and relative humidftgelength of a signalN =2922and the critical points are comput
at 95% confidence level for a giveouple of time series, each of which is Gaussiad.iwith zero mean and ur
variance. The underlined numeric denotes beingsstatly significant under a given critical poil

Segment sizd!

OrderL Location

n=2( n=30 n=60 n=90 n=120 n=150 n=300
L=1 Seoul 0.09: 0.088 0.087 0.090 0.080 0.066 0.242
B Cheol-won 0.122 -0.095 -0.100 -0.093 -0.070 -0.056 0.291
e -0.071 -0.086 -0.124 -0.150 -0.176 -0.195 -0.283
pc(N.n1 =)
+ 0 0.07( 0.087 0.120 0.148 0.175 0.190 0.290
L= Seoul 0.07¢ 0.095 0.085 0.081 0.080 0.072 0.107
B Cheol-won 0.122 -0.107 -0.114 -0.107 -0.100 -0.114 0.056
(Nonl =2) —pPc -0.06( -0.069 -0.100 -0.133 -0.150 -0.163 -0.240
P (NN, =
© + 0 0.05¢ 0.076 0.100 0.127 0.156 0.176 0.250
L=a Seoul 0.07( 0.073 0.089 0.085 0.078 0.077 0.092
B Cheol-won 0.11(¢ -0.115 -0.119 -0.108 -0.106 -0.108 -0.090
- Pc -0.05( -0.062 -0.086 -0.101 -0.124 -0.135 -0.200
pc(N,nl =4)
+ 0 0.05: 0.057 0.080 0.099 0.112 0.143 0.197
L=16 Seoul 0.09¢ 0.011 0.057 0.103 0.104 0.083 0.096
B Cheol-won 0.041 -0.131 -0.130 -0.108 -0.100 -0.110 -0.106
- Pc -0.09( -0.055 -0.055 -0.063 -0.065 -0.078 -0.101
Pc(N,n,1 =16)
+ 0 0.091 0.058 0.057 0.060 0.066 0.080 0.103

a strong periodic trend as shown in figure 2. Aindthe periodic trend. However, a lo-period trend still survives
region of small to middle scale s n, no sensitive and we need a higherder polynomial fit. Also, for th
dependence on the polynomial order is observedtite difference signals, there is a negatcross-correlation in
successive difference signals of maximum tempesi the whole range of scale s n. However, we need to
and relative humidity as shown in figure 3, these- determine whether this negative cross correlatisi
correlation p(N,n,l) looks different from figure 2. Fc genuine or notso we perform a statistical te
this case, the parilic trend is weaker than in the origin ~ AS & practical problem in use p(N,n,l), for finite
signals because the successive differencing eltesna
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time series, due to the size effeg{N, n,l)is not zero but

presumably some small nonzero value even if -
correlations are not present. Thus, to test whethe
crosseorrelations are genuine or not, we p(N,n,l) as

the first statistical test. First, we determine thall
hypothesis. We begin by assuming that, under tHe
hypothesis, the time series are independent amdicadly
distributed random variables (i.i.d) and calculdie range
of p(N,n,l) that can be obtained under the assumg

that the time series are i.i.d. To this end, weaivbthe
PDF corresponding to the constrain{N,nl} by

generating 1000 i.i.d. time series pairs taken fra
Gaussian distribution, wherfer each time series pair v

calculate the detrended variandé’,(n,I) and the
detrendedcovariancB .., (n,1), and then test it using E
(9). As expected P(ppcca (N, N, 1)) is almost symmetri

and, with increasind", the PDF converges to a Gauss
due to the central limit theorem. Next, for eachH
P(0pcca (NN, 1)) defined by{N, nl} , we calculate th

critical point o, (N,n,l) for the 95% confidence leve

The critical values are given in Table 1 and 2. Figur
shows the DCCA cross-correlatigoy.., (N, n,l) of two

pairs of signals, namely the maximum values and
successive difference time series, with respectthi®
critical points. Also, in figure 5, we sw the DCCA
crosseorrelation coefficients for the oceanograg
signals. In this analysis, as the statistical t@stapply the
surrogate method by shuffling the series. At thehéar
order detrending, the crossirelation pattern becom
clearer compared to the lower one.

This finding shows that the higher order of polyrialr
fitting and the statistical test are essentiahtgestigate thi
crosseorrelations between highly n-stationary time
series with a periodic trend. Especially, the metkmical
signals have a strong periodic trend and they atevell
detrended simply by differencing the successivea
values. Our all analysis results on 2 locationspaesentel
in Table 1 and 2 with the critical poin

As shown in Table 1, the modified DCt cross-
correlation coefficient is very sensitive to thelypomial
order and a highly periodic trend is well elimirgtby
increasing the order of a polynomial fit. Also, wan
determine if a genuine crossirelation is present betwe
a pair of meteoralgical signals by performing a statistir
test. We present the analysis results for the st
difference signals in Table 2.

The successive difference gives very similar resuith
those in the maximum values. For Seoul, the
correlation betwen air temperature and air humic
seems to be positive while, for Ch-won, a negative
crosseorrelation is present. Also, for a large scale n,
the linear local detrending is not suitable foredting a
genuine cross-correlah due to a periodic trend. Sin
our data are recorded daily and have a yearly saéisg
the validity of our modified DCCA cro-correlation
coefficient is conspicuous at the large scale n=300.
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V. CONCLUSION

The higher-order polyamial fits are very useful i
detecting the crosserrelation between highly n-
stationary time series with a periodic trend, eslgc
meteorological data such as air temperature arative
humidity. In this work, we presented a modifiedsien of
the DCCA crosssorrelation coefficient based on the v-
known DFA and DCCA methods. In order to prove
validity of our new approach, we applied the madi
DCCA coefficient to meteorological data with yea
seasonality as a strong periodic trend. Bcreasing the
order of polynomial fits, we found that the spusaros-
correlations appear via a linear local detrendihdaege
scale size [19,20]. Also, we determined whetherGCB
crosseorrelation  coefficient value is  statistica
significant or no by performing a statistical test. The n
crosseorrelation analysis approach presented in thisk\
will be very useful in investigating the cr-correlation
between complex time series contaminated with &g
of periodic trends.
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