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Abstract – Most meteorological time series are long

auto-correlated and cross-correlated. Due to the presence of 
highly periodic trends, these correlations are di
quantify and, very often, spurious correlations are reported. 
In order to eliminate the seasonal trends of meteorological 
data, we apply the detrending technique with varying order l 
of the polynomial and compute the DCCA
coefficients. Furthermore, for the statistical properties of 
DCCA cross-correlation coefficients between those detrended 
meteorological time series, we performed the statistical test 
by introducing the cross-correlation coefficients computed 
from a thousand number of uncorrelated Gaussian time 
series as null hypothesis. In the 95% significance level, our 
analysis results show that the cross-correlation coefficients 
are very sensitive to the order of the polynomial. Also, the 
spurious correlations gradually decrease as the order of the 
polynomial increases. The utility of this new approach is 
illustrated from two pairs of selected meteorological time 
series, which are recorded at Cheol-Won and Seoul, and 
from a pair of oceanographic signals recorded at Hae
dae near the south sea of Korean peninsula
 

Keywords – DCCA Coefficient, DFA, Meteorological 
Series, Detrending Method. 
 

I.  INTRODUCTION
 
Noisy signals in many real-world systems are recorded 

simultaneously and display long-range auto
well as cross-correlations. These correlations play a 
central role in a variety of disciplines such as physics, 
physiology, seismology, finance, meteorology, and so on 
[1-4]. To gain an insight into the correlation dynamics, the 
standard methods such as power spe
correlation analysis were developed and used widely. 
However, these standard methods assume stationarity and 
linearity in data and have limitations when applied to the 
real-world data, being commonly non-stationary and often 
exhibiting periodicity. Thus, detrending is essential to 
properly analyze the real-world time series because 
detrending prevents a time series being correlated if no 
correlation is present, and reveals a genuine correlation if 
correlations exist. In general, detrending
locally or globally. When applied locally, DFA (detrended 
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NTRODUCTION  

world systems are recorded 
range auto-correlations as 

correlations. These correlations play a 
central role in a variety of disciplines such as physics, 
physiology, seismology, finance, meteorology, and so on 

]. To gain an insight into the correlation dynamics, the 
standard methods such as power spectral density and 
correlation analysis were developed and used widely. 
However, these standard methods assume stationarity and 
linearity in data and have limitations when applied to the 

stationary and often 
riodicity. Thus, detrending is essential to 

world time series because 
detrending prevents a time series being correlated if no 
correlation is present, and reveals a genuine correlation if 
correlations exist. In general, detrending is applied to data 
locally or globally. When applied locally, DFA (detrended 

fluctuation analysis) quantifies a single scaling parameter 
representing the long-range auto
a signal [5-7] while DCCA (detrended cross
analysis) provides a single scaling parameter representing 
the long-range cross-correlation properties between two 
non-stationary signals [8,9]. The application of a global 
detrending does not guarantee that we can obtain a 
stationary signal because most compl
stationary. Also, the local linear detrending method is not 
suitable for obtaining a stationary signal from original 
noisy signals with highly nonlinear trends accompanied by 
periodic trends. In order to overcome the limitations 
mentioned above, different extensions of DFA have been 
proposed which locally subtract higher
from the original signal together with the detrended 
moving average (DMA) [10,11
[12,13].  

In the cross-correlation analysis, the 
very useful in detecting and quantifying power
correlations in many real-world non
However, the DCCA single scaling parameter is not 
suitable for quantifying the level of cross
Also, the well knownpearson correlation coefficient is not 
robust and often misleading if outliers are present, as in 
real-world data characterized by a high degree of non
stationarity. To overcome these limitations, a new cross
correlation coefficient based on DCCA was propo
G. F. Zebende [14]. Now if we have two time series, 

and { ' },ix  we can compute the detrended variance 

function 2 ( )DFAF n  and the detrended covariance function 
2 ( )DCCAF n  by applying DFA and DCCA methods to these 

data. This new coefficient is defined as the ratio between 
the detrended covariance function 

detrended variance function2
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correlation properties between two 
]. The application of a global 

detrending does not guarantee that we can obtain a 
stationary signal because most complex signals are non-
stationary. Also, the local linear detrending method is not 
suitable for obtaining a stationary signal from original 
noisy signals with highly nonlinear trends accompanied by 
periodic trends. In order to overcome the limitations 

d above, different extensions of DFA have been 
proposed which locally subtract higher-order polynomials 
from the original signal together with the detrended 

10,11] and multifractal DFA 

correlation analysis, the DCCA method is 
very useful in detecting and quantifying power-law cross-

world non-stationary signals. 
However, the DCCA single scaling parameter is not 
suitable for quantifying the level of cross-correlations. 

pearson correlation coefficient is not 
misleading if outliers are present, as in 

world data characterized by a high degree of non-
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Fig. 1. The plots of temperature (a) and humidity (b)are presented. T
and the difference of successive maximum values is denoted by a red dotted line. A cl

the maximum values. T
 

ranges between 1 1DCCAρ− ≤ ≤ . 

In our work, we extend the DCCA coefficient by 
applying the detrending technique with varying order of 
the polynomial. The detrending function with a higher 
order of the polynomial is very useful to eliminate periodic 
trends, which are present in most meteorological time 
series, without affecting the correlation property of the 
signal [15]. In the following, we perform the comparative 
study between the local linear detrending and the local 
nonlinear detrending. Also, we examine the utility of the 
local nonlinear detrending method by performing this 
study to both pairs of signals, namely the maximum values 
of air temperature and air relative humidity, and the 
successive difference of those maximum values. In 
addition, we include the oceanographic signals, 
differences of salinity and water temperature recorded 
every 30 minutes.  

The organization of this paper is as follows. In the 
succeeding section, we give a brief description of data and 
discuss the methodology in section III. Our results are 
presented in section IV and, in the final 
summary and concluding remarks.  

 
II.  DATA  

 
If The meteorological data under consideration are 

composed of a pair of air temperature and relative 
humidity over 2 stations in the South Korea. They are 
recorded hourly over 8 years and show a high degree of 
periodicity as in figure 1. In this work, we extract the daily 
maximum values of air temperature and relative humidity 
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e plots of temperature (a) and humidity (b)are presented. The maximum values are denoted by a blue solid line 
and the difference of successive maximum values is denoted by a red dotted line. A clear periodic trend is observed for 

the maximum values. The data set is recorded at Cheol-won. 

In our work, we extend the DCCA coefficient by 
applying the detrending technique with varying order of 

ial. The detrending function with a higher 
order of the polynomial is very useful to eliminate periodic 
trends, which are present in most meteorological time 
series, without affecting the correlation property of the 

m the comparative 
study between the local linear detrending and the local 

Also, we examine the utility of the 
local nonlinear detrending method by performing this 
study to both pairs of signals, namely the maximum values 

ature and air relative humidity, and the 
successive difference of those maximum values. In 

include the oceanographic signals, which are 
differences of salinity and water temperature recorded 

as follows. In the 
section, we give a brief description of data and 

discuss the methodology in section III. Our results are 
 section, we give a 

data under consideration are 
composed of a pair of air temperature and relative 

outh Korea. They are 
recorded hourly over 8 years and show a high degree of 

this work, we extract the daily 
imum values of air temperature and relative humidity 

from the hourly recorded data covering the period from 01 
January 2003 to 31 December 2010, and analyze the two 
datasets; one is the daily maximum values of air 
temperature { }ix and relative humidity 

is the successive differences of those maximum values 
given as 1{ }i ix x+ −  and 1{ ' ' },i ix x+ −
the oceanographic signals, we computed the difference of 
water temperature and salinity recorded every 30 minutes 
and applied the higher-order detrending method to them. 
 

III.  METHO
 

In time series analysis there are some well
methods to use. Among them, the most frequently cited 
method is the DFA to provide a relati

( )DFAF n (root mean square fluctuation) and the scale

exhibiting a power-law DFAF n n

long-range auto-correlation scaling exponent. As a 
generalization of the DFA method, B. Podobnik et al. 
proposed the DCCA method to investigate power
cross-correlations between different simultaneously 
recorded time series in the presence of non
Thus, for two time series of equal length N, we compute 

two integrated signals 
1

k

k i
i

y x
=

≡∑

1, , .k N= …  And then, we divide the entire time series 
into N n− overlapping segments, each containing 
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Fig. 2. The modified DCCA cross-correlation c
relative humidity. For the linear detrending

the fitting polynomial order increases, the DCCA coefficient decreases. This fact implies that a strong correlation is due 
to the periodic trend present in both temperature and humidity signals. Above the order

dependence on the fitting polyno

n values. For both time series, in each segment that starts 
at i and ends at 1,i n+ −  we define the local trends, 

,'k iyɶ , to be the ordinate of a linear least squares fit. Lastly, 

we define the detrended walk as the difference between 
the original walk and the local trend, that is, 

,' 'k k iy y− ɶ . Next, we calculate the cova

residuals in each segment defined as  

∑
−+

=

−−≡
1

,,
2 )'~')(~(

1
),(

in

ik
ikkikkDCCA yyyy

n
inf

     
where i denotes the segment index. Finally, we can obtain 
the detrended covariance function by summing over all 
overlapping N n−  segments of size n: 

∑
−

=−
≡

nN

i
DCCADCCA inf

nN
nF

1

22 ),(
)(

1
)(

          
For a singular time series, ( ' ),k ky y=

covariance 2 ( )DCCAF n  reduces to the detrended variance 
2 ( )DFAF n  used in the DFA method. The

covariance functions are used to define the DCCA cross
correlation coefficient expressed in Equation (1). 

 For this new cross-correlation coefficient, B. Podobnik 
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correlation coefficients are presented for the maximum signals of air temperature and 
relative humidity. For the linear detrending (order 1l = ),  ( ,1)DCCA nρ exhibits a strongly positive cross

increases, the DCCA coefficient decreases. This fact implies that a strong correlation is due 
to the periodic trend present in both temperature and humidity signals. Above the orderl

dependence on the fitting polynomial order. The data set is recorded at Cheol
 

values. For both time series, in each segment that starts 
we define the local trends, ,k iyɶ and

, to be the ordinate of a linear least squares fit. Lastly, 

we define the detrended walk as the difference between 
the original walk and the local trend, that is, ,k k iy y− ɶ and

covariance of the 

       (2) 
denotes the segment index. Finally, we can obtain 

the detrended covariance function by summing over all 

  (3) 
( ' ),k ky y the detrended 

reduces to the detrended variance 

used in the DFA method. These variance and 

covariance functions are used to define the DCCA cross-
correlation coefficient expressed in Equation (1).  

correlation coefficient, B. Podobnik 

et al. derived that the Cauchy 

holds for a standard variance
then for a detrending approach [16]. Also, to test whether 
the cross-correlations are genuine (statistically significant) 
or not, the authors carried out the statistical test and 
calculated critical points ( , )C N nρ
level defined such that the integral between 

and ( , )C N nρ  is equal to 0.95. Thus, the range of

within which the cross-correlations can be considered 
statistically significant, is determined. In this work, we do 
the same statistical test and determine the new critical 
points ( , , )C N n lρ , which are also dependent of the order 

of the polynomial in addition to the length of a time series 
N and the segment size n .  

Lastly, the DFA and the DCCA methods are not suitable 
for complex time series with highly nonlinear trends 
accompanied by periodic trends. D. Horvatic et al. 
proposed a DCCA method with varying orde
polynomial fit [15]. This higher order fitting approach was 
shown not to affect correlation properties even when the 
polynomial order values are very large. The authors tested 
the validity of their approach by applying the higher

60 90 120 150
Scale size, n (days)
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Fig. 3. The modified DCCA cross-correlation coefficients are presented for the successive differences of maximum air 
temperature and relative humidity. Since, t
signals, the dependence on the polynomial order is not clear. However, for the large scale size, a higher
order is needed to well detrend the long-
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statistical weight defined by
( ) ( ) / ( ( ) (1 )),na n nρ ρ ρ= Γ − Γ − Γ +  where 

Gamma function and ρ  is a parameter ranging from 

to 0.5. According to the work of D. Horvatic et al. [15], 
the detrending method with varying order of the 
polynomial well eliminates the periodic trend and 
preserves the inherent cross-correlation between two 
signals. Importantly, the polynomial order
with the segment size n. In our work, we apply all possible 
orders of the polynomial to the segment with scale size 
and examine the dependency of the DCCA cross
correlation coefficient ( , , )N n lρ  on the order

polynomial. 
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correlation coefficients are presented for the successive differences of maximum air 
temperature and relative humidity. Since, the successive differencing eliminates the periodic trend present in the 

on the polynomial order is not clear. However, for the large scale size, a higher
-term periodic trend.  The data set is recorded at Cheol

polynomial fitting to two artificial time series generated 
component fractionally autoregressive 

integrated moving average (ARFIMA) process [17,18],  

iη+
         (4) 

iη+
     (5) 

d 'iz  in order to 

is the sinusoidal period, 

are two sinusoidal amplitudes, and ( )na ρ  is a 

statistical weight defined by
where Γ denotes the 

is a parameter ranging from  –0.5 

D. Horvatic et al. [15], 
with varying order of the 

polynomial well eliminates the periodic trend and 
correlation between two 

signals. Importantly, the polynomial order l is increasing 
n our work, we apply all possible 

orders of the polynomial to the segment with scale size n 
and examine the dependency of the DCCA cross-

on the order l of the 

IV.  RESULTS
 
In the analysis, we investigate both the maximum values 

and the difference between successive maximum values by 
applying the varying order of the fitting polynomial. In 
order to examine the relationship between the scale size
of a segment and the polynomial order
scale size set and the fitting order set as follows:

{20,30, 60,90,120,150,300} :

{1, 2, 4, 6,8,10,12,14,16}

n

l

=
=
Here, all the components of the fitting order set

applied to each component of the scale size set
modify the equations (2) and (3) by replacing the linear 
local trend ,k iyɶ  with the polynomial local trend

Then, the local detrended variance 
given as follows: 
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and the difference between successive maximum values by 
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Fig. 4. The modified DCCA cross-correlation coefficients are presented 
differences of maximum air temperature and relative humidity. For maximum values (a), a strong positive cross
correlation seems to be only due to the periodic trend. At the
cross-correlation over the scale range. However, for the difference signals (b), the cross
square fitting is statistically insignificant and, at the higher order o
statistically robust. The data set is recorded at Cheol

 

Fig. 5. The modified DCCA cross-correlation coefficients are presented 
differences salinity and water temperature. At the higher order of polynomial fit, we find a clear negative cross
correlation over the whole scale range. However, for the linear detrending fit, the cross
scale region. 
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correlation coefficients are presented with the critical points, for the successive 
differences of maximum air temperature and relative humidity. For maximum values (a), a strong positive cross
correlation seems to be only due to the periodic trend. At the higher order of polynomial fit, we find a negative or no 

correlation over the scale range. However, for the difference signals (b), the cross-correlation under the linear least 
square fitting is statistically insignificant and, at the higher order of polynomial fit, the negative cross

e data set is recorded at Cheol-won. 

correlation coefficients are presented with the critical points, for the successive 
water temperature. At the higher order of polynomial fit, we find a clear negative cross

correlation over the whole scale range. However, for the linear detrending fit, the cross-correlation is unclear in the long 

rended covariance and 
variance, we obtain the detrended variance and covariance 
dependent on the fitting polynomial order l. Then, the 

( , , )N n l  is defined as  

),ln
       (9) 

for the maximum 

signals and the difference signals. In fig. 2 and 3 we show 

the modified DCCA  cross-correlation coefficients, which 
seems to be very sensitive to the fitting polynomial order. 

The maximum value signals for air temperature and 
relative humidity have a strong periodic trend and may 
yield a spurious strong cross-correlation when the linear 
local detrending is applied. However, by applying a 
higher-order fitting polynomial to the original signal, we 
can obtain a genuine cross-correlation not contaminated by 

60 90 120 150 300
Scale size, n (days)

60 90 120 150 300
Scale size, n(days)

150 200 250 300 350
scale size, n

International Journal of Applied Science and Mathematics 
, ISSN (Online): 2394-2894 

 
the critical points, for the successive 

differences of maximum air temperature and relative humidity. For maximum values (a), a strong positive cross-
higher order of polynomial fit, we find a negative or no 

correlation under the linear least 
f polynomial fit, the negative cross-correlation is 

 
the critical points, for the successive 

water temperature. At the higher order of polynomial fit, we find a clear negative cross-
correlation is unclear in the long 

correlation coefficients, which 
seems to be very sensitive to the fitting polynomial order.  

ignals for air temperature and 
relative humidity have a strong periodic trend and may 

correlation when the linear 
local detrending is applied. However, by applying a 

order fitting polynomial to the original signal, we 
correlation not contaminated by  

300

 

300

 

order, l=1
order, l=16
+ρρρρc(n,1)

-ρρρρc(n,1)

+ρρρρc(n,16)

-ρρρρc(n,16)

order, l=1
order, l=16
+ρρρρc(n,1)

-ρρρρc(n,1)

+ρρρρc(n,16)

-ρρρρc(n,16)

400

 

-ρρρρ
c
(n,1)

+ρρρρc
(n,1)

-ρρρρc
(n,16)

+ρρρρc
(n,16)

order = 1
order = 16



 

 

Copyright © 2016 IJASM, All right reserved

Table 1. The modified DCCA cross-correlation coefficient 

temperature and air relative humidity. The 
confidence level for a given couple of time series, each of which is Gaussian i.i.d. with zero mean and unit variance. The 
underlined numeric denotes being statistically significant under a given critica

OrderL  Location 
n=20

L=1 
Seoul 0.104

Cheol-won 0.000

)1,,( =lnNCρ  
Cρ−

 -0.071

Cρ+
 0.070

L=2 
Seoul 0.132

Cheol-won -0.087

)2,,( =lnNCρ  
Cρ−

 -0.060

Cρ+
 0.058

L=4 
Seoul 0.084

Cheol-won -0.104

)4,,( =lnNCρ  
Cρ−

 -0.050

Cρ+
 0.053

L=16 
Seoul 0.070

Cheol-won -0.040

)16,,( =lnNCρ  
Cρ−

 -0.090

Cρ+
 0.091

 
Table 2. The modified DCCA cross-correlation c

of maximum daily temperature and relative humidity. The 
at 95% confidence level for a given couple of time series, each of which is Gaussian i.i.d. with zero mean and unit 
variance. The underlined numeric denotes being statistically significant under a given critical point. 

OrderL  Location 
n=20

L=1 
Seoul 0.093

Cheol-won -0.122

)1,,( =lnNCρ  
Cρ−

 -0.071

Cρ+
 0.070

L=2 
Seoul 0.075

Cheol-won -0.122

)2,,( =lnNCρ  
Cρ−

 -0.060

Cρ+
 0.058

L=4 
Seoul 0.070

Cheol-won -0.110

)4,,( =lnNCρ  
Cρ−

 -0.050

Cρ+
 0.053

L=16 
Seoul 0.099

Cheol-won -0.041

)16,,( =lnNCρ  
Cρ−

 -0.090

Cρ+
 0.091

 
a strong periodic trend as shown in figure 2. And, in the 
region of small to middle scale size
dependence on the polynomial order is observed. For the 
successive difference signals of maximum temperature 
and relative humidity as shown in figure 3, the cross
correlation ( , , )N n lρ  looks different from figure 2. For 

this case, the periodic trend is weaker than in the original 
signals because the successive differencing eliminates a 
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correlation coefficient ( , , )C N n lρ  are presented for the maximum values of air 

temperature and air relative humidity. The length of a signal 2922=N and the critical points are computed at 95% 
confidence level for a given couple of time series, each of which is Gaussian i.i.d. with zero mean and unit variance. The 
underlined numeric denotes being statistically significant under a given critical point.  

Segment size n  
n=20 n=30 n=60 n=90 n=120
0.104 0.185 0.149 0.444 0.486
0.000 0.083 0.254 0.571 0.751

0.071 -0.086 -0.124 -0.150 -0.176

0.070 0.087 0.120 0.148 0.175

0.132 0.095 0.085 0.054 -0.017
0.087 -0.090 -0.087 -0.052 0.041

0.060 -0.069 -0.100 -0.133 -0.150

0.058 0.076 0.100 0.127 0.156

0.084 0.103 0.082 0.027 -0.027
0.104 -0.103 -0.125 -0.193 -0.103

0.050 -0.062 -0.086 -0.101 -0.124

0.053 0.057 0.080 0.099 0.112

0.070 0.003 0.085 0.160 0.177
0.040 -0.147 -0.143 -0.047 -0.034

0.090 -0.055 -0.055 -0.063 -0.065

0.091 0.058 0.057 0.060 0.066

correlation coefficient ( , , )C N n lρ are presented for the successive difference signals 

of maximum daily temperature and relative humidity. The length of a signal 2922=N and the critical points are computed 
ouple of time series, each of which is Gaussian i.i.d. with zero mean and unit 

variance. The underlined numeric denotes being statistically significant under a given critical point. 
Segment size n  

n=20 n=30 n=60 n=90 n=120 
0.093 0.088 0.087 0.090 0.080 
0.122 -0.095 -0.100 -0.093 -0.070 

0.071 -0.086 -0.124 -0.150 -0.176 

0.070 0.087 0.120 0.148 0.175 

0.075 0.095 0.085 0.081 0.080 
0.122 -0.107 -0.114 -0.107 -0.100 

0.060 -0.069 -0.100 -0.133 -0.150 

0.058 0.076 0.100 0.127 0.156 

0.070 0.073 0.089 0.085 0.078 
0.110 -0.115 -0.119 -0.108 -0.106 

0.050 -0.062 -0.086 -0.101 -0.124 

0.053 0.057 0.080 0.099 0.112 

0.099 0.011 0.057 0.103 0.104 
0.041 -0.131 -0.130 -0.108 -0.100 

0.090 -0.055 -0.055 -0.063 -0.065 

0.091 0.058 0.057 0.060 0.066 

a strong periodic trend as shown in figure 2. And, in the 
region of small to middle scale size n, no sensitive 
dependence on the polynomial order is observed. For the 
successive difference signals of maximum temperature 
and relative humidity as shown in figure 3, the cross-

looks different from figure 2. For 

odic trend is weaker than in the original 
signals because the successive differencing eliminates a 

periodic trend. However, a long
and we need a higher-order polynomial fit. Also, for the 
difference signals, there is a negative 
the whole range of scale size
determine whether this negative cross correlation is 
genuine or not, so we perform a statistical test. 

As a practical problem in use of
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are presented for the maximum values of air 

and the critical points are computed at 95% 
confidence level for a given couple of time series, each of which is Gaussian i.i.d. with zero mean and unit variance. The 

n=120 n=150 n=300 
0.486 0.580 0.830 
0.751 0.777 0.936 

0.176 -0.195 -0.283 

0.175 0.190 0.290 

0.017 -0.023 0.715 
0.041 0.082 0.848 

0.150 -0.163 -0.240 

0.156 0.176 0.250 

0.027 -0.013 0.159 
.103 -0.178 0.236 

0.124 -0.135 -0.200 

0.112 0.143 0.197 

0.177 0.133 0.055 
0.034 -0.106 -0.059 

0.065 -0.078 -0.101 

0.066 0.080 0.103 

are presented for the successive difference signals 

and the critical points are computed 
ouple of time series, each of which is Gaussian i.i.d. with zero mean and unit 

variance. The underlined numeric denotes being statistically significant under a given critical point.  

 n=150 n=300 
 0.066 0.242 
 -0.056 0.291 

 -0.195 -0.283 

 0.190 0.290 

 0.072 0.107 
 -0.114 0.056 

 -0.163 -0.240 

 0.176 0.250 

 0.077 0.092 
 -0.108 -0.090 

 -0.135 -0.200 

 0.143 0.197 

 0.083 0.096 
 -0.110 -0.106 

 -0.078 -0.101 

 0.080 0.103 

periodic trend. However, a long-period trend still survives 
order polynomial fit. Also, for the 

difference signals, there is a negative cross-correlation in 
the whole range of scale size n. However, we need to 
determine whether this negative cross correlation is 

so we perform a statistical test.  
As a practical problem in use of( , , ),N n lρ for finite 
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time series, due to the size effect, ( , , )N n lρ
presumably some small nonzero value even if cross
correlations are not present. Thus, to test whether the 
cross-correlations are genuine or not, we use 

the first statistical test. First, we determine the null 
hypothesis. We begin by assuming that, under the null 
hypothesis, the time series are independent and identically 
distributed random variables (i.i.d) and calculate the range 
of ( , , )N n lρ  that can be obtained under the assumption 

that the time series are i.i.d. To this end, we obtain the 
PDF corresponding to the constraints 

generating 1000 i.i.d. time series pairs taken from a 
Gaussian distribution, where for each time series pair we 
calculate the detrended variance DFAF n l

detrendedcovariance 2 ( , )DCCAF n l , and then test it using Eq. 

(9). As expected, ( ( , , ))DCCAP N n lρ is almost symmetric 

and, with increasing n , the PDF converges to a Gaussian 
due to the central limit theorem. Next, for each PDF 

( ( , , ))DCCAP N n lρ  defined by{ , , }N n l , we calculate the 

critical point ( , , )C N n lρ  for the 95% confidence level. 

The critical values are given in Table 1 and 2. Figure 4 
shows the DCCA cross-correlation DCCAρ
pairs of signals, namely the maximum values and the 
successive difference time series, with respect to the 
critical points. Also, in figure 5, we sho
cross-correlation coefficients for the oceanographic 
signals. In this analysis, as the statistical test, we apply the 
surrogate method by shuffling the series. At the higher 
order detrending, the cross-correlation pattern becomes 
clearer compared to the lower one. 

This finding shows that the higher order of polynomial 
fitting and the statistical test are essential to investigate the 
cross-correlations between highly non
series with a periodic trend. Especially, the meteorological 
signals have a strong periodic trend and they are not well 
detrended simply by differencing the successive data 
values. Our all analysis results on 2 locations are presented 
in Table 1 and 2 with the critical points. 

As shown in Table 1, the modified DCCA
correlation coefficient is very sensitive to the polynomial 
order and a highly periodic trend is well eliminated by 
increasing the order of a polynomial fit. Also, we can 
determine if a genuine cross-correlation is present between 
a pair of meteorological signals by performing a statistical 
test. We present the analysis results for the successive
difference signals in Table 2. 

The successive difference gives very similar results with 
those in the maximum values. For Seoul, the cross
correlation between air temperature and air humidity 
seems to be positive while, for Cheol
cross-correlation is present. Also, for a large scale size 
the linear local detrending is not suitable for detecting a 
genuine cross-correlation due to a periodic trend. Since 
our data are recorded daily and have a yearly seasonality, 
the validity of our modified DCCA cross
coefficient is conspicuous at the large scale size
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( , , )N n l is not zero but 

presumably some small nonzero value even if cross-
correlations are not present. Thus, to test whether the 

correlations are genuine or not, we use ( , , )N n lρ  as 

the first statistical test. First, we determine the null 
hypothesis. We begin by assuming that, under the null 
hypothesis, the time series are independent and identically 
distributed random variables (i.i.d) and calculate the range 

that can be obtained under the assumption 

that the time series are i.i.d. To this end, we obtain the 
PDF corresponding to the constraints { , , }N n l  by 

generating 1000 i.i.d. time series pairs taken from a 
for each time series pair we 

2 ( , )DFAF n l  and the 

, and then test it using Eq. 

is almost symmetric 

, the PDF converges to a Gaussian 
due to the central limit theorem. Next, for each PDF 

{ , , } , we calculate the 

for the 95% confidence level. 

values are given in Table 1 and 2. Figure 4 
( , , )DCCA N n l  of two 

pairs of signals, namely the maximum values and the 
successive difference time series, with respect to the 
critical points. Also, in figure 5, we show the DCCA 

correlation coefficients for the oceanographic 
signals. In this analysis, as the statistical test, we apply the 
surrogate method by shuffling the series. At the higher 

correlation pattern becomes 

This finding shows that the higher order of polynomial 
fitting and the statistical test are essential to investigate the 

correlations between highly non-stationary time 
series with a periodic trend. Especially, the meteorological 
signals have a strong periodic trend and they are not well 
detrended simply by differencing the successive data 
values. Our all analysis results on 2 locations are presented 
in Table 1 and 2 with the critical points.  

As shown in Table 1, the modified DCCA cross-
correlation coefficient is very sensitive to the polynomial 
order and a highly periodic trend is well eliminated by 
increasing the order of a polynomial fit. Also, we can 

correlation is present between 
ogical signals by performing a statistical 

test. We present the analysis results for the successive 

The successive difference gives very similar results with 
those in the maximum values. For Seoul, the cross-

een air temperature and air humidity 
seems to be positive while, for Cheol-won, a negative 

correlation is present. Also, for a large scale size n, 
the linear local detrending is not suitable for detecting a 

ion due to a periodic trend. Since 
our data are recorded daily and have a yearly seasonality, 
the validity of our modified DCCA cross-correlation 
coefficient is conspicuous at the large scale size300n = . 

V. CONCLUSION
 
The higher-order polynomial fits are very useful in 

detecting the cross-correlation between highly non
stationary time series with a periodic trend, especially 
meteorological data such as air temperature and relative 
humidity. In this work, we presented a modified version of 
the DCCA cross-correlation coefficient based on the well
known DFA and DCCA methods. In order to prove the 
validity of our new approach, we applied the modified 
DCCA coefficient to meteorological data with yearly 
seasonality as a strong periodic trend. By in
order of polynomial fits, we found that the spurious cross
correlations appear via a linear local detrending at large 
scale size [19,20]. Also, we determined whether a DCCA 
cross-correlation coefficient value is statistically 
significant or not by performing a statistical test. The new 
cross-correlation analysis approach presented in this work 
will be very useful in investigating the cross
between complex time series contaminated with a variety 
of periodic trends.  
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