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Abstract — Projective lag synchronization of fractional synchronization and projective synchronizationareays
order chaotic systems with unknown parameters is practically impossible owing to the signal propamat
investigated. It is shown that the slave system cdme delays in the environment. Therefore, it is mosomable
synchronized with the past states of the driver upo a that the slave and master systems synchronize anitty
scaling matrix. According to the stability theoremof time 7. And the lag synchronization appears as a
linear fractional order systems, a nonlinear contrtler  coincidence of shift-in-time states of interactigkeaotic
and the parameter update laws are proposed for the systems in many different areas including laser3],[2
synchronization of systems with same and different complex networks [24], neuron systems [25] and iecu
structures. Both chaotic and hyperchaotic systemsra communication [26]. In 2007, the lag synchronizatiof
applied to the synchronization. The numerical resus fractional order chaotic systems is first discusf]. In
coincide with the theoretical analysis. 2011, the projective lag synchronization of fragéiborder

chaotic (hyperchaotic) systems is investigated dasethe

Keywords — Projective Lag Synchronization Chaos, stability theorem of linear fractional order chaasiystem
Nonlinear Control, Fractional Derivative, Unknown [28].

Parameters. In many practical situations, the parameters of ynan
systems are inevitably perturbed by the exterreatificial

. INTRODUCTION factors and cannot be known in priori. And the
synchronization will be destroyed by these unceties.

Fractional calculus is supposed to be a genermlizaf Therefore, the chaotic synchronization of fractlona
integration and differentiation with arbitrary ordewhose dynamical systems with unknown parameters is more
history can be dated back to the 17th centuryAlthough essential and useful for the theoretical and riéal-l
fractional calculus has been a pure mathematictipi applications. Very recently, the complete synctzation
more than 300 years, its applications to physiadpdpy, of uncertain fractional order chaotic systems weseved
engineering and control processing have been wildlyased on the sliding mode control [29, 30]. The iffexti
studied in the last decades [2-5]. With the intiighin of ~ projective synchronization of uncertain fractioraider
fractional calculus, the chaotic synchronization ohyperchaotic systems was considered based on the
fractional order dynamical systems becomes an ectigtability theorem of the linear fractional ordestgm [31].
research field due to its great potential applreti The adaptive impulsive synchronization of fractiooraler
especially in secure communication and control ggsing chaotic systems with uncertain parameters was siscl
[6, 7]. Now, for the fractional order chaotic syste many [32]. And the lag synchronization and parameter
different types of chaotic synchronization are preed, identification of fractional order chaotic systemere
such as complete synchronization [8], projectiveleliberated in Ref. [33]. However, there are fesutes on
synchronization [9], lag synchronization [10], gaalized the projective lag synchronization (PLS) of underta
synchronization [11], Q-S synchronization [12] antust fractional order chaotic systems. Motivated by &eve
synchronization [13]. And lots of schemes are miedlifor discussion, the PLS of fractional order chaotic
the synchronization based on the laplace transfoathod (hyperchaotic) systems with unknown parameters is
[14], active control [15], sliding mode control [Létc. investigated. The well-known complete synchrontrati
All of these examples clarify the importance ofprojective synchronization and lag synchronizatimre
consideration and analysis of the fractional orclemotic  special cases of the PLS. Moreover, the paramefeise
systems and their synchronization. drive and response systems cannot be exactly krown

Projective synchronization was first proposed bydvance or some of them are completely unknown.
Mainieri and Rehacek in 1999 [17], where the dravel The remainder of this Letter is organized as foiown
response systems are synchronized up to a scalotgrf Section I, a nonlinear controller is designed thoe PLS
Its proportional feature can be used to extend rhinabased on the stability theorem of linear fractional
digital to M-nary digital communication for achieg fast differential system. And the update laws of theapaeters
communication [18]. Recently, various kinds of patjve to identify the unknown parameters are given. Thhka,
synchronization for fractional order chaotic systeare numerical simulations in Section |l are applied to
studied, such as modified projective synchronizafit®], manifest the validity and feasibility of the maieasults.
generalized projective synchronization [20], hybricrinally, conclusions are drawn in Section IV.
projective synchronization [21] and function projee
synchronization [22]. From the viewpoint of engirieg
applications and channel characteristics, complete
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ll. PLS OF UNCERTAIN FRACTIONAL ORDER reference signal Qk-7) ultimately.

CHAOTIC SYSTEMS With the parameters mentioned above, a nonlinear
controller is assumed as
There are some definitions of fractional derivagigach U =Ke(t)+ CF( X t- T))— G( X 1)) (5)

as Grunwald-Letnikov, Riemann-Liouville and Caputo +CM (x(t=N 8= N( V(DS

derivative [1]. The Caputo derivative is populattie real (X(_ T)) ( A )) ’ . )
applications because the inhomogeneous initial itond ~ WhereK =diag{ky, kz, -+, ki), K OR™ is a feedback gain
are allowed if such conditions are necessary. Heth® matrix, = (él!ézf" ’éd )T and §= (515_2 3 )T
Caputo fractional derivative is employed in thisrkvoAnd

its definition is described by stand for the estimated vectors of the unknownrpater

qu(t) - Jm-q\;m)(t) g>0 vectorséd and g, respectively. Combining (1), (2) with (5),
H A h irst i hich I the error system is expressed as

wi erem:((ﬂ, i.e.,mis the |lrst mtege.rw -|c is no.t ess D7%(t) = Ke( ) + CM( X t—r)) e- l\( f)) s (6

than g, J® is the p-order Riemann-Liouville fractional where e, —6-9 and e, _5_5 are the parameter

integral operator which is defined as
g P estimated errors. Then, the PLS between systeman()

-1
J*aw(t) =th(t—r)p w(r)dr, p>0, (2) is transformed into the discussion of the agytigal
r(p)’ stability of the zero solution of system (6).
wherel'(-) is the gamma function. Theorem 1 For the fractional order drive system (1)
Consider a fractional order drive system as and response system (2), the PLS can be achievbd if
D7x(t) = F(x(t))+ M (x(1))6, 1) feedback gain matrix K diag{k, ko, =*-, k.} in controller
wherex(t) = ((t), %o(t), -, X,(t)) "0 R" is the state vector, (5) satisfies k< 0, i = 1, 2, ---, n. And the unknown

atd(0, 1) is the order of the fractional differentajuation, parameters), J can be identified based on the parameter
F:R"_. R is a continuous function vector, Update laws

M :R" - R“%is a function matrix, and = (6, 6, -, D”é:—[CM (x(t—r))]T e 1), (7)

6, )T OR®% denotes an unknown parameter vector. Choosge 5= NT (y(t)) e(1). ®)

a fractional order response system with a contrake Proof. Combining systems (6), (7) and (8), the error
D7y (t)=G(y(1)+ N( YD)+ U, 2 system can be written as

wherey(t) = (yi(t), ya(t), -+, yo(t))" O R" is the state vector, [D"e(t), D7e, Of e;,]T ©)

G:R"- R is a continuous function vector,
N:R' - R*% is a function matrixg= (d, & -+, g, )"

= A(x(t-), y(9) e ). 5. &]

where the real polynomial matrix

OR* is an unknown parameter vector, ang (Uy, Up, -, _
u,)' is a controller which will be designed later. A(X(t T)’ y( t))
The error state vector between systems (1) ando(2) K CM (x(t=1)) -N(y(1)
the synchronization is defined as T
e(t) = y(1)- CX t-17), @ = —[CMT(X(t-T))] 0 0
wheree(t) = (1), &), -, e()’ 0 R, C = diag{cy, ¢, NT (y(1)) 0 0
-+, G} OR™ is areal scaling matrix7 > 0 represents the  Assume . is an arbitrary eigenvalue of the matrix
lag time. _ _ A(x(t-1), y(t)) and the corresponding non-zero eigenvector
Definition 1 For the fractional order drive system (1) is 7, i.e.
and response system (2), it is said to be projeckag ol _ 10
synchronization (PLS) if there exists a contro$&l$ such A(X_(t _T)’ y( t))” = A7 ) " ) (10)
that Multiplying the above equation left by, we obtain
iim [le(0)] = lim || y(t)- e t=7)] =0. @ " A(X(t=1), y(9)7 =An"n, (11)

t - +oo t - +oo

whereH stands for conjugate transpose of a maffixis

Remark 1 If the scaling matrix C=I and CH, the PLS . . .
scaing X Iaglso an eigenvalue of the polynomial ma#ix(t-1), y(t)),

is respectively reduced to the complete

synchronization and the anti-phase lag synchromomat eH .y —

Remark 2 If the lag timer = 0, the PLS is changed into 7" A (x(t=7), y(9)=An". (12)
the projective synchronization of the fractionalder Similarly, Eq. (12) becomes
chaotic systems with unknown parameters. n" A" (x(t— 7), ¥( t))/; =An"n. (13)

Remark 3 According to the idea of tracking control, Combining Egs. (11) and (13), the considered eiglerei
Cx(t-7) in the error state vector (3) is a reference signa gaiisfies

order to achieve the goalm e(t)||:0. Then, the PLS

t - +oo

between systems (1) and (2) belongs to the prolofem
tracking control, i.e. the output signalty follows the
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A+ performed. And a predictor-corrector scheme [34, i85

(14)  used for the approximate numerical solutions of the
— ,H _ H _ H
=7 [A(X(t 7). y(t))+ A (X(t 7). y(t))}n/n d fractional order differential equations.

=n"Qn/n"'n, A. The PLS between chaotic fractional order Chen and
wherey™; > 0,Q = A(X(t-1), y(t)) + A(x(t-1), y(t)), i.e., Lu systems with unknown parameters
2K 0 0 It is assumed that the fractional order chaotic iChe
B system [36] drives the LU system [36]. The drivstes is
Q= 0 0 0. written as
0 00 | D7, (1)=6, (%,() - (1))
Since the matriX = diag{ky, ko, -+, kn} is subject tok < . _ (15)
D t)=(6,-6, t)-x(t )+6
0,i=1,2 - n we can derive tha}*Qpy < 0. And then, % ()= (6 =6)%,(8) = x(8) x( )+ o[ §
/1+/T=2Re(/1)S 0. D Xa(t):)(l(t)xz(t)_ez)(s(t)

— T
Hence, for the fractional order error system (@) oan Y;htﬁf)é(:é er (é#(?r;((:ztgghgi(g)eril\?agn?veé,siazﬁel,vzstggg |(g ’ﬂ% g
get that o
real positive parameter vector. Wher= 0.95,0 = (35, 3,
|arg(/1)| 27/ 2> anf 2, 28)" andx(0) = (15, 12, 31) the chaotic attractor of the
where aJ(0,1), 2 is an arbitrary eigenvalue of thefractional order Chen system (15) is shown in BigThe
polynomial matrix A(x(t-7), y(t)). According to the corresponding response system is described by
stability theorem of linear fractional order autommus D”yl(t)=51(y2(t)—yl(t))+th
system [6], the error system (9) is asymptoticathble at o —_
z)e/ro poi[ng. The PLS o)q‘ unce(rt;in fraztio%al ordtz;coiic D%y, (1) == %() w(9+ &y 9+ v
systems (1) and (2) is realized based on the deerti®).  D°Ys(8)=.(1) vo() - Sy( 9+ u
And the unknown parameters of systems (1) and &) avherey(t) = (ya(t), ya(t), ys(t))" is the state vectod = (J,
estimated in the process of the PLS. This compliétes &, @)T is the real positive parameter vectbr,= (U, Uy,
proof. us)" is the controller to be designed later. Whes 0.95,
J = (35, 28, 3) andy(0) = (4.2, 3.2, 11) the chaotic
lll.  APPLICATIONS attractor of the fractional order Lii system (163li®wn in
Fig. 2.
Two examples of the PLS for uncertain chaotic andg
hyperchaotic fractional order systems are respagtiv

(16)

Y1 ¥

Fig. 2. The chaotic attractor of fractional ordér dystem (16) withy = 0.95,0= (35, 28, 3) andy(0) = (4.2, 3.2, 1T)
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Fig. 3. The The error state curves of the PLS betwthe fractional order systems (15) and (16) wit®.5, 4 (0) = (33,
4, 25),5(0)= (38, 25, 2)C =diag{2, 2, 2} andK =diag{-12,-14,-13}.

Comparing systems (15) and (16) with systems (8) aQ here » - T and e = T are the
(2), one can have € (eﬁl'%z' ‘33) eé"(eél'%z' ‘33)

0 0 parameter estimated erross,= x(t-7), i = 1, 2, 3 are the
simple notations. Then, the error states are suljec
F(x(0)=] % (0% () |, &(y(0)=| -%() (9 . i 3 SO S
()9 wOw(y)  WTATE @A E b s S e
2 2 R o a AnT R A AT
% (1) = % (1) 0 0 9:(91,92,93) and 5:(51,52,53) stand for the
M (x(t)) = -x (1) 0 x () + % (9], estimated vectors of the unknown parameter ve&@nsd
0 -x, (1) 0 o, respectively. Due to Theorem 1, the PLS of system
(15)-(16) can be achieved with< 0,i =1, 2, 3. And the
Y.(t)-w(t) o 0 unknown parameters can be estimated based on the
N (y(t)) = 0 ¥ (1) o |. following parameter update laws
0 0 -y(t) D?6,=c, (%, — %) &(§+ &% ¢ ),

The error state vector between systems (15) andig16 D”éZ:CBXST%( ),
defined ase(t) = y(t)- Cx(t-7), wheree(t) = (e(t), ex(t), ah - _
es(t))", C = diag{cy, ¢, cs} is a real scaling matrix. Then, D 613 ¢ (% + %) &(9.
a(t) = yi(H)-cx(t-1,i =1, 2, 3. 5=(v, ()= wu(1)) &( .
According to the proposed controller (5), the errorDa5 =y (t t
system is obtained as yz( )eZ( )

“g(t)=ke()+c(%- %) g (Y()t @I D4,= -y, (1) & ().
“e(t)=ke(d-cx g+ o x+ x) £~ ¥ )t.e
D %(t)=k3%(t)—%>s%+ x()o%
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Fig. 4. The curves of the parameter estimated £mith 7= 0.5, §(0) = (33, 4, 25),5(0)= (38, 25, 2) an€ = diag{2,
2, 2}.
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Fig. 5. The estimated values of the unknown paremedctors withr= 0.5, 4 (0) = (33, 4, 25),5(0) = (38, 25, 2) an€
=diag{2, 2, 2}.

For example, whem = 0.95,0 = (35, 3, 28), = (35, as the drive system, whex@) = (xu(t), Xx(t), Xs(t), Xa(t))" is
28, 3Y, x(0) = (15, 12, 31)andy(0) = (4.2, 3.2, 11) the the state vector,ad(0, 1) is the order of fractional
drive and response systems (15)-(16) are chacitingr ~ derivative, 0 = (01, 05, 03, 04, 05)" is the real positive
= 0.5, 67(0) = (33’4,25)T , 3—(0) = (38’25,3T and the parameter vector. Whea = 0.96,6 = (35, 7, 12, 3, 0.5)

. . . andx(0) = (1.2, 2.1, 3.1, 0.1)the chaotic attractor of the
scaling matrixC = diag{2, 2, 2}, the PLS between the

in fractional ord haoi 15 fractional order Chen system (17) is shown in Big.
uncertain fractional order chaotic systems (15) &) Choose the hyperchaotic fractional order Lorenzesys

can be realized witlK = diag{-12, -14, -13}. The error [38]
states between systems (15) and (16) are showigirBF _

which indicate the PLS is successfully achlevedeThD %(Y y4(t)+51(y2(t) yl(t))ﬂ“h

curves of the parameter estimated errors are gisplin DY, (t)== Y, (t) = vi(1) ys( )+, () + w(18)

Fig. 4. And the estimated values of the unknowrpye, v (D= v+

parameter vectors are shown in Fig. 5, which mehas a(1)=5:(0) Yo = oyl +

estimated vectorg, & converge to the exact valués= D7, (1) == v.(t) () -0,y 9+ u

(35, 3, 28] and &= (35, 28, 3) ast — w. as trle. response system, whe(® = (yl(t)'TYZ(t)' ya(t),
B. The PLS between hyperchaotic fractional order Cheny“(t).). is the state vectord = (9, &, &, d) |sTthe real
and Lorenz systems with unknown parameters positive parameter _VeCtO'U = (U, U Us, Ug) s the
Consider the hyperchaotic fractional order Cheresys controller to be designed later. When= 0.96, 0 = (10,

[37] 28, 8/3, 1§ andy(0) = (12, 22, 31, 4) the chaotic attractor
o of the fractional order Lorenz system (18) is shamifrig.
DX, (1)=x,(1)+6,( (9~ %() 3 ystem (18) ’
D%, (t) =6,%,(1) = x.(1) (9 +65%,( 9 (17)
D7, (1) =%, (1) % (1) = €. ¢
Dx, (£) =%, (1) %( )+9 x( 1)
150
40
100 -
30
50+
4 204
= 0
10
£0
-28, 20 A0
-10 0
0 b =0 100
20 40
i @ 150, 20 -0 0 10 20 30

(b)
Fig. 6. The chaotic attractor of fractional ordére@ system (17T)) witly = 0.96,0 = (35, 7, 12, 3, 0.8)andx(0) = (1.2,
2.1,3.1,01
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Fig. 7. The chaotic attractor of fractional orderénz systemT (18) witkr= 0.96,5= (10, 28, 8/3, Iandy(0) = (12, 22,
31, 4).

Comparing systems (17) and (18) with systems (8) an According to Theorem 1, the PLS between the unicerta

(2), one can obtain

X, (t) v, (1)
F(X(t)): _X)fl((tt))x)f((t;) ,G(y(t)): _yz(l)(t)Y1(())y3(t) ,
()0 (1% (9)
% (t)-%(t) o 0 0 0
wixg)=| 0 Rl el _xf(t) 0 |
0 0 0 0 X4(t)
yZ(t)_yl(t) 0 0 0
o= o Ly .
0 0 0 —y4(t)

The error state vector between systems (17) andi§18
described bye(t) = y(t) - Cx(t—7), wheree(t) = (ey(t), ex(t),
es(t), es(t))", C = diag{cy, ¢y, Cs, €4} is a real scaling matrix.
Then,e(t) = yi(t)—cx(t-1,i =1, 2, 3, 4.

Due to the proposed controller (5), the error syste
given as

“e(t)=ke(d+c(x- %) g-( U)X AN &
e, ()=k, (t)+<‘2>$,92+ cxe- f)te
‘g()=ke()-cx g+ ¥ )&
“e,(1)= k&(t)+ca>su—g+ ¥( ) e

Whereeg (6.8 8 8) e =(g.q.5. )

are the parameter estimated errarss x(t-7),i =1, 2, 3,
4 are the simple notations. And the error statessabject

toe,=6-6,i=1,23/45¢ =6-5,,i=123,
4, whereg = (él,éz,és,é4,és)T and § = (3‘1,3‘2,3‘3,3‘4)T
stand for the estimated vectors of the unknown mpater
vectorsd andd, respectively.

fractional order hyperchaotic systems (17) and ¢&8) be
achieved withk; < 0,i = 1, 2, 3, 4. And the unknown
parameters can be estimated based on the following
parameter update laws

D g=c, (%, — %) &( 9,
D74,=-c,x, &(1),
D74,=-c,%, &(1),
D74,=c,x, &(1),
D G=-c,x,&( ",
082 (v, () - (D) a1,
D?8,=y, (t) &,(1).
D?5,= - yy(t) e(),
D 8,=-y,(t)e,(1).
For example, whemr = 0.96,6 = (35, 7, 12, 3, 0.8) 0
= (10, 28, 8/3, T) x(0)=(1.2, 2.1, 3.1, 0.1)andy(0) = (12,
22, 31, 4, the drive and response systems (17)-(18) are
chaotic. Setting7 = 0.08, §(0)=(33,10,9,7,2.5 |

5(0)=(13,24,2 3+ 1.5 and the scaling matri< =
diag{1.5, 1.5, 1.5, 1.5}, the PLS between the fractiona
order hyperchaotic systems (17) and (18) can biézega
with the matrixK = diag{-33, -36, -38, -35}. The error
states between systems (17) and (18) are showigir8F
which indicate the PLS is successfully achievede Th
curves of the parameter estimated errors are gisplan
Fig. 9. And the estimated values of the unknown
parameter vectors are shown in Fig. 10, which ntean

estimated vector®, & converge to the exact valués=
(35, 7, 12, 3, 0.8)and 0= (10, 28, 8/3, 1)ast — .
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Fig. 10. The estimated values of the unknown patemectors withr = 0.08,4(0) = (33, 10, 9, 7, 2.5)5(0) = (13, 24,

23/3,-1.5) andC = diag{1.5, 1.5, 1.5, 1.5}.

IV. CONCLUSIONS update laws are designed to identify the unknown
parameters. Both identical and different structssetems
The PLS of uncertain fractional order chaotic systés can be applied to realize the synchronization. Iinthe
investigated based on the stability theorem of aine Parameter identification and the PLS of the frawaio
fractional order systems. A nonlinear controller i®rder chaotic and hyperchaotic systems with unknown
proposed for the response System to Synchroniz@abe parameters are achieved. The effectiveness an[blfﬁﬁs
states of the drive system up to a scaling masnd the
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of the advised scheme are verified in the numericél6]
simulations.

It is well-known that the time-delayed charactécsare
frequently encountered in the engineering applicatue
to the transportation lag or the feedback delayenTtthe
synchronization of time-delayed fractional orderaatic (18]
systems with unknown parameters will be considened

future.
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