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Abstract – Projective lag synchronization of fractional 
order chaotic systems with unknown parameters is 
investigated. It is shown that the slave system can be 
synchronized with the past states of the driver up to a 
scaling matrix. According to the stability theorem of 
linear fractional order systems, a nonlinear controller 
and the parameter update laws are proposed for the 
synchronization of systems with same and different 
structures. Both chaotic and hyperchaotic systems are 
applied to the synchronization. The numerical results 
coincide with the theoretical analysis. 
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I.  INTRODUCTION  
 
Fractional calculus is supposed to be a generalization of 

integration and differentiation with arbitrary orders, whose 
history can be dated back to the 17th century [1]. Although 
fractional calculus has been a pure mathematic topic for 
more than 300 years, its applications to physics, biology, 
engineering and control processing have been wildly 
studied in the last decades [2-5]. With the introduction of 
fractional calculus, the chaotic synchronization of 
fractional order dynamical systems becomes an active 
research field due to its great potential applications 
especially in secure communication and control processing 
[6, 7]. Now, for the fractional order chaotic systems, many 
different types of chaotic synchronization are presented, 
such as complete synchronization [8], projective 
synchronization [9], lag synchronization [10], generalized 
synchronization [11], Q-S synchronization [12] and robust 
synchronization [13]. And lots of schemes are provided for 
the synchronization based on the laplace transform method 
[14], active control [15], sliding mode control [16], etc. 
All of these examples clarify the importance of 
consideration and analysis of the fractional order chaotic 
systems and their synchronization. 

Projective synchronization was first proposed by 
Mainieri and Rehacek in 1999 [17], where the drive and 
response systems are synchronized up to a scaling factor. 
Its proportional feature can be used to extend binary 
digital to M-nary digital communication for achieving fast 
communication [18]. Recently, various kinds of projective 
synchronization for fractional order chaotic systems are 
studied, such as modified projective synchronization [19], 
generalized projective synchronization [20], hybrid 
projective synchronization [21] and function projective 
synchronization [22]. From the viewpoint of engineering 
applications and channel characteristics, complete 

synchronization and projective synchronization are always 
practically impossible owing to the signal propagation 
delays in the environment. Therefore, it is more reasonable 
that the slave and master systems synchronize with a lag 
time τ. And the lag synchronization appears as a 
coincidence of shift-in-time states of interactive chaotic 
systems in many different areas including lasers [23], 
complex networks [24], neuron systems [25] and secure 
communication [26]. In 2007, the lag synchronization of 
fractional order chaotic systems is first discussed [27]. In 
2011, the projective lag synchronization of fractional order 
chaotic (hyperchaotic) systems is investigated based on the 
stability theorem of linear fractional order chaotic system 
[28]. 

In many practical situations, the parameters of many 
systems are inevitably perturbed by the external inartificial 
factors and cannot be known in priori. And the 
synchronization will be destroyed by these uncertainties. 
Therefore, the chaotic synchronization of fractional 
dynamical systems with unknown parameters is more 
essential and useful for the theoretical and real-life 
applications. Very recently, the complete synchronization 
of uncertain fractional order chaotic systems was achieved 
based on the sliding mode control [29, 30]. The modified 
projective synchronization of uncertain fractional order 
hyperchaotic systems was considered based on the 
stability theorem of the linear fractional order system [31]. 
The adaptive impulsive synchronization of fractional order 
chaotic systems with uncertain parameters was discussed 
[32]. And the lag synchronization and parameter 
identification of fractional order chaotic systems were 
deliberated in Ref. [33]. However, there are few results on 
the projective lag synchronization (PLS) of uncertain 
fractional order chaotic systems. Motivated by the above 
discussion, the PLS of fractional order chaotic 
(hyperchaotic) systems with unknown parameters is 
investigated. The well-known complete synchronization, 
projective synchronization and lag synchronization are 
special cases of the PLS. Moreover, the parameters of the 
drive and response systems cannot be exactly known in 
advance or some of them are completely unknown. 

The remainder of this Letter is organized as follows. In 
Section II, a nonlinear controller is designed for the PLS 
based on the stability theorem of linear fractional 
differential system. And the update laws of the parameters 
to identify the unknown parameters are given. Then, the 
numerical simulations in Section III are applied to 
manifest the validity and feasibility of the main results. 
Finally, conclusions are drawn in Section IV. 
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II.  PLS OF UNCERTAIN FRACTIONAL ORDER 
CHAOTIC SYSTEMS 

 
There are some definitions of fractional derivatives such 

as Grunwald-Letnikov, Riemann-Liouville and Caputo 
derivative [1]. The Caputo derivative is popular in the real 
applications because the inhomogeneous initial conditions 
are allowed if such conditions are necessary. Hence, the 
Caputo fractional derivative is employed in this work. And 
its definition is described by 

( ) ( ) ( ) , 0,mq m qD v t J v t q−= >  

where m q=    , i.e., m is the first integer which is not less 

than q, pJ  is the p-order Riemann-Liouville fractional 
integral operator which is defined as 

( ) ( ) ( ) ( )
1

0

1
, 0,

ptpJ t t d p
p

ω τ ω τ τ
−

= − >
Γ ∫  

where Γ(·) is the gamma function. 
Consider a fractional order drive system as 

( ) ( )( ) ( )( ) ,D x t F x t M x tα θ= +

   

(1) 

where x(t) = (x1(t), x2(t), …, xn(t))
T∈ Rn  is the state vector, 

α∈(0, 1) is the order of the fractional differential equation, 
: n nF R R→  is a continuous function vector, 

1: n dnM R R ×→ is a function matrix, and θ = (θ1, θ2, …, 

1dθ )T 1dR∈  denotes an unknown parameter vector. Choose 

a fractional order response system with a controller as 

( ) ( )( ) ( )( ) ,D y t G y t N y t Uα δ= + +

  

(2) 

where y(t) = (y1(t), y2(t), …, yn(t))
T ∈ Rn is the state vector, 

: n nG R R→  is a continuous function vector, 
2: n dnN R R ×→  is a function matrix, δ = (δ1, δ2, …, 

2dδ )T 

2dR∈  is an unknown parameter vector, and U = (u1, u2, …, 
un)

T  is a controller which will be designed later. 
The error state vector between systems (1) and (2) for 

the synchronization is defined as 
( ) ( ) ( ) ,e t y t Cx t τ= − −

    
(3) 

where e(t) = (e1(t), e2(t), …, en(t))
T ∈ Rn, C = diag{c1, c2, 

…, cn} ∈ Rn×n is a real scaling matrix,  τ > 0 represents the 
lag time. 

Definition 1 For the fractional order drive system (1) 
and response system (2), it is said to be projective lag 
synchronization (PLS) if there exists a controller $U$ such 
that 

( ) ( ) ( )lim lim 0.
t t

e t y t Cx t τ
→+∞ →+∞

= − − =
  

(4) 

Remark 1 If the scaling matrix C=I and C=-I, the PLS 
is respectively reduced to the complete lag 
synchronization and the anti-phase lag synchronization. 

Remark 2 If the lag time τ = 0, the PLS is changed into 
the projective synchronization of the fractional order 
chaotic systems with unknown parameters. 

Remark 3 According to the idea of tracking control, 
Cx(t-τ) in the error state vector (3) is a reference signal in 
order to achieve the goal ( )lim 0.

t
e t

→+∞
=  Then, the PLS 

between systems (1) and (2) belongs to the problem of 
tracking control, i.e. the output signal y(t) follows the 

reference signal Cx(t-τ) ultimately. 
With the parameters mentioned above, a nonlinear 

controller is assumed as 
( ) ( )( ) ( )( )

( )( ) ( )( )ˆ ˆ,

U Ke t CF x t G y t

CM x t N y t

τ

τ θ δ

= + − −

+ − −    

(5) 

where K = diag{k1, k2, …, kn}, K ∈ Rn×n is a feedback gain 

matrix, ( )
11 2

ˆ ˆ ˆ ˆ, , ,
T

dθ θ θ θ= ⋯  and ( )
21 2

ˆ ˆ ˆ ˆ, , ,
T

dδ δ δ δ= ⋯  

stand for the estimated vectors of the unknown parameter 
vectors θ and δ, respectively. Combining (1), (2) with (5), 
the error system is expressed as 

( ) ( ) ( )( ) ( )( ) ,D e t Ke t CM x t e N y t eα
θ δτ= + − −

 

(6) 

where ˆeθ θ θ= −  and ˆeδ δ δ= −  are the parameter 

estimated errors. Then, the PLS between systems (1) and 
(2) is transformed into the discussion of the asymptotical 
stability of the zero solution of system (6). 

Theorem 1 For the fractional order drive system (1) 
and response system (2), the PLS can be achieved if the 
feedback gain matrix K = diag{k1, k2, …, kn}  in controller 
(5) satisfies ki < 0, i = 1, 2, …, n. And the unknown 
parameters θ, δ can be identified based on the parameter 
update laws 

( )( ) ( )ˆ ,
T

D CM x t e tαθ τ = − − 

   

(7) 

( )( ) ( )ˆ .TD N y t e tαδ =      (8) 

Proof. Combining systems (6), (7) and (8), the error 
system can be written as 

( )
( ) ( )( ) ( )

, ,

, , , ,

T

T

D e t D e D e

A x t y t e t e e

α α α
θ δ

θ δτ

  

= −   
   

(9) 

where the real polynomial matrix 

( ) ( )( )
( )( ) ( )( )

( )( )
( )( )

,

0 0 .

0 0

T

T

A x t y t

K CM x t N y t

CM x t

N y t

τ

τ

τ

−

 − −
 
  = − −  
 
 

 

Assume λ is an arbitrary eigenvalue of the matrix  
A(x(t-τ), y(t)) and the corresponding non-zero eigenvector 
is η, i.e., 

( ) ( )( ), .A x t y tτ η λη− =

    

(10) 

Multiplying the above equation left by ηH, we obtain 

( ) ( )( ), ,H HA x t y tη τ η λη η− =

   

(11) 

where H stands for conjugate transpose of a matrix. λ  is 
also an eigenvalue of the polynomial matrix A(x(t-τ), y(t)), 
i.e., 

( ) ( )( ), .H H HA x t y tη τ λη− =

   

(12) 

Similarly, Eq. (12) becomes 

( ) ( )( ), .H H HA x t y tη τ η λη η− =

   

(13) 

Combining Eqs. (11) and (13), the considered eigenvalue λ 
satisfies 
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( ) ( )( ) ( ) ( )( ), ,

,

H H H

H H

A x t y t A x t y t

Q

λ λ

η τ τ η η η

η η η η

+

 = − + − 

=  

(14) 

where ηHη > 0, Q = A(x(t-τ), y(t)) + AH(x(t-τ), y(t)), i.e., 
2 0 0

0 0 0 .

0 0 0

K

Q

 
 =  
 
 

 

Since the matrix K = diag{k1, k2, …, kn} is subject to ki < 
0, i = 1, 2, …, n, we can derive that 0.H Qη η ≤  And then, 

( )2 Re 0.λ λ λ+ = ≤  

Hence, for the fractional order error system (9), one can 
get that 

( )arg 2 2,λ π απ≥ >  

where α∈(0,1), λ is an arbitrary eigenvalue of the 
polynomial matrix A(x(t-τ), y(t)). According to the 
stability theorem of linear fractional order autonomous 
system [6], the error system (9) is asymptotically stable at 
zero point. The PLS of uncertain fractional order chaotic 
systems (1) and (2) is realized based on the controller (5). 
And the unknown parameters of systems (1) and (2) are 
estimated in the process of the PLS. This completes the 
proof. 
 

III.  APPLICATIONS  
 
Two examples of the PLS for uncertain chaotic and 

hyperchaotic fractional order systems are respectively 

performed. And a predictor-corrector scheme [34, 35] is 
used for the approximate numerical solutions of the 
fractional order differential equations. 
A. The PLS between chaotic fractional order Chen and 
Lü systems with unknown parameters 

It is assumed that the fractional order chaotic Chen 
system [36] drives the Lü system [36]. The drive system is 
written as 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 1

2 3 1 1 1 3 3 2

3 1 2 2 3

=

=

=

D x t x t x t

D x t x t x t x t x t

D x t x t x t x t

α

α

α

θ

θ θ θ

θ

−

− − +

−
 

(15) 

where x(t) = (x1(t), x2(t), x3(t))
T is the state vector, α∈(0, 1) 

is the order of fractional derivative, θ = (θ1, θ2, θ3)
T is the 

real positive parameter vector. When α = 0.95, θ = (35, 3, 
28)T and x(0) = (15, 12, 31)T, the chaotic attractor of the 
fractional order Chen system (15) is shown in Fig. 1. The 
corresponding response system is described by 

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 1 1

2 1 3 2 2 2

3 1 2 3 3 3

=

=

=

D y t y t y t u

D y t y t y t y t u

D y t y t y t y t u

α

α

α

δ

δ

δ

− +

− + +

− +
   

(16) 

where y(t) = (y1(t), y2(t), y3(t))
T is the state vector, δ = (δ1, 

δ2, δ3)
T is the real positive parameter vector, U = (u1, u2, 

u3)
T is the controller to be designed later. When α = 0.95, 

δ = (35, 28, 3)T and y(0) = (4.2, 3.2, 11)T, the chaotic 
attractor of the fractional order Lü system (16) is shown in 
Fig. 2. 

 
Fig. 1. The chaotic attractor of fractional order Chen system (15) with α = 0.95, θ = (35, 3, 28)T and x(0) = (15, 12, 31)T. 

 

 
Fig. 2. The chaotic attractor of fractional order Lü system (16) with α  = 0.95, δ = (35, 28, 3)T and y(0) = (4.2, 3.2, 11)T. 
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Fig. 3. The The error state curves of the PLS between the fractional order systems (15) and (16) with τ =0.5, ( )ˆ 0θ = (33, 

4, 25), ( )ˆ 0δ = (38, 25, 2), C = diag{2, 2, 2} and K = diag{ -12, -14, -13}. 

 
Comparing systems (15) and (16) with systems (1) and 

(2), one can have 

( )( ) ( ) ( )
( ) ( )
1 3

1 2

0

,F x t x t x t

x t x t

 
 = − 
 
 

( )( ) ( ) ( )
( ) ( )
1 3

1 2

0

,G y t y t y t

y t y t

 
 = − 
 
 

 

( )( )
( ) ( )

( ) ( ) ( )
( )

2 1

1 1 2

3

0 0

0 ,

0 0

x t x t

M x t x t x t x t

x t

− 
 = − + 
 − 

 

( )( )
( ) ( )

( )
( )

2 1

2

3

0 0

0 0 .

0 0

y t y t

N y t y t

y t

− 
 =  
 − 

 

The error state vector between systems (15) and (16) is 
defined as e(t) = y(t)- Cx(t-τ), where e(t) = (e1(t),  e2(t), 
e3(t))

T, C = diag{c1, c2, c3} is a real scaling matrix. Then, 
ei(t) = yi(t)-cixi(t-τ), i = 1, 2, 3. 

According to the proposed controller (5), the error 
system is obtained as 

( ) ( ) ( ) ( ) ( )( )
1 11 1 1 1 2 1 2 1= ,D e t k e t c x x e y t y t eα

τ τ θ δ+ − − −

( ) ( ) ( ) ( )
1 3 22 2 2 2 1 2 1 2 2= ,D e t k e t c x e c x x e y t eα

τ θ τ τ θ δ− + + −  

( ) ( ) ( )
2 33 3 3 3 3 3= ,D e t k e t c x e y t eα

τ θ δ− +  

where ( )
1 2 3
, ,

T
e e e eθ θ θ θ=  and ( )

1 2 3
, ,

T
e e e eδ δ δ δ=  are the 

parameter estimated errors, xiτ = xi(t-τ), i = 1, 2, 3 are the 
simple notations. Then, the error states are subject to 

ˆ
i i ieθ θ θ= − , ˆ

i i ieδ δ δ= − , i = 1, 2, 3, where 

( )1 2 3
ˆ ˆ ˆ ˆ, ,

T

θ θ θ θ=  and ( )1 2 3
ˆ ˆ ˆ ˆ, ,

T

δ δ δ δ=  stand for the 

estimated vectors of the unknown parameter vectors θ and 
δ, respectively. Due to Theorem 1, the PLS of systems 
(15)-(16) can be achieved with ki < 0, i = 1, 2, 3. And the 
unknown parameters can be estimated based on the 
following parameter update laws 

( ) ( ) ( )
( )

( ) ( )

1 1 1 2 1 2 1 2

2 3 3 3

3 2 1 2 2

ˆ = ,

ˆ = ,

ˆ = ,

D c x x e t c x e t

D c x e t

D c x x e t

α
τ τ τ

α
τ

α
τ τ

θ

θ

θ

− +

− +

 

( ) ( )( ) ( )
( ) ( )

( ) ( )

1 2 1 1

2 2 2

3 3 3

ˆ = ,

ˆ = ,

ˆ = .

D y t y t e t

D y t e t

D y t e t

α

α

α

δ

δ

δ

−

−

 
(a) 

 
(b) 

Fig. 4. The curves of the parameter estimated errors with τ = 0.5, ( )ˆ 0θ = (33, 4, 25), ( )ˆ 0δ = (38, 25, 2) and C = diag{2, 

2, 2}. 
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(a) 

 
(b) 

Fig. 5. The estimated values of the unknown parameter vectors with τ = 0.5, ( )ˆ 0θ = (33, 4, 25), ( )ˆ 0δ = (38, 25, 2) and C 

= diag{2, 2, 2}. 
 

For example, when α = 0.95, θ = (35, 3, 28)T, δ = (35, 
28, 3)T, x(0) = (15, 12, 31)T and y(0) = (4.2, 3.2, 11)T, the 
drive and response systems (15)-(16) are chaotic. Setting τ 

= 0.5, ( ) ( )ˆ 0 33, 4, 25
Tθ = , ( ) ( )ˆ 0 38, 25, 2

Tδ =  and the 

scaling matrix C = diag{2, 2, 2}, the PLS between the 
uncertain fractional order chaotic systems (15) and (16) 
can be realized with K = diag{ -12, -14, -13}. The error 
states between systems (15) and (16) are shown in Fig. 3, 
which indicate the PLS is successfully achieved. The 
curves of the parameter estimated errors are displayed in 
Fig. 4. And the estimated values of the unknown 
parameter vectors are shown in Fig. 5, which means the 
estimated vectors ̂,θ δ̂  converge to the exact values θ = 

(35, 3, 28)T and δ = (35, 28, 3)T as t → ∞. 
B. The PLS between hyperchaotic fractional order Chen 
and Lorenz systems with unknown parameters 

Consider the hyperchaotic fractional order Chen system 
[37] 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 4 1 2 1

2 2 1 1 3 3 2

3 1 2 4 3

4 2 3 5 4

=

=

=

=

D x t x t x t x t

D x t x t x t x t x t

D x t x t x t x t

D x t x t x t x t

α

α

α

α

θ

θ θ

θ

θ

+ −

− +

−

+

(17) 

as the drive system, where x(t) = (x1(t), x2(t), x3(t), x4(t))
T is 

the state vector, α∈(0, 1) is the order of fractional 
derivative, θ = (θ1, θ2, θ3, θ4, θ5)

T is the real positive 
parameter vector. When α = 0.96, θ = (35, 7, 12, 3, 0.5)T 
and x(0) = (1.2, 2.1, 3.1, 0.1)T, the chaotic attractor of the 
fractional order Chen system (17) is shown in Fig. 6.  

Choose the hyperchaotic fractional order Lorenz system 
[38]  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 4 1 2 1 1

2 2 1 3 2 1 2

3 1 2 3 3 3

4 2 3 4 4 4

=

=

=

=

D y t y t y t y t u

D y t y t y t y t y t u

D y t y t y t y t u

D y t y t y t y t u

α

α

α

α

δ

δ

δ

δ

+ − +

− − + +

− +

− − +

(18) 

as the response system, where y(t) = (y1(t), y2(t), y3(t), 
y4(t))

T is the state vector, δ = (δ1, δ2, δ3, δ4)
T is the real 

positive parameter vector, U = (u1, u2, u3, u4)
T is the 

controller to be designed later. When α = 0.96, δ = (10, 
28, 8/3, 1)T and y(0) = (12, 22, 31, 4)T, the chaotic attractor 
of the fractional order Lorenz system (18) is shown in Fig. 
7. 

 
(a) 

 
(b) 

Fig. 6. The chaotic attractor of fractional order Chen system (17) with α = 0.96, θ = (35, 7, 12, 3, 0.5)T and x(0) = (1.2, 
2.1, 3.1, 0.1)T. 
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(a) 

 
(b) 

Fig. 7. The chaotic attractor of fractional order Lorenz system (18) with α = 0.96, δ = (10, 28, 8/3, 1)T and y(0) = (12, 22, 
31, 4)T. 

 
Comparing systems (17) and (18) with systems (1) and 

(2), one can obtain 

( )( )
( )

( ) ( )
( ) ( )
( ) ( )

4

1 3

1 2

2 3

,

x t

x t x t
F x t

x t x t

x t x t

 
 − =
 
  
 

( )( )
( )

( ) ( ) ( )
( ) ( )
( ) ( )

4

2 1 3

1 2

2 3

,

y t

y t y t y t
G y t

y t y t

y t y t

 
 − − =
 
  − 

 

( )( )
( ) ( )

( ) ( )
( )

( )

2 1

1 2

3

4

0 0 0 0

0 0 0
,

0 0 0 0

0 0 0 0

x t x t

x t x t
M x t

x t

x t

− 
 
 =
 −
  
 

 

( )( )
( ) ( )

( )
( )

( )

2 1

1

3

4

0 0 0

0 0 0
.

0 0 0

0 0 0

y t y t

y t
N y t

y t

y t

− 
 
 =
 −
  − 

 

The error state vector between systems (17) and (18) is 
described by e(t) = y(t)- Cx(t-τ), where e(t) = (e1(t),  e2(t), 
e3(t), e4(t))

T, C = diag{c1, c2, c3, c4} is a real scaling matrix. 
Then, ei(t) = yi(t)-cixi(t-τ), i = 1, 2, 3, 4. 

Due to the proposed controller (5), the error system is 
given as 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1

2 3 2

4 3

5 4

1 1 1 1 2 1 2 1

2 2 2 2 1 2 2 1

3 3 3 3 3 3

4 4 4 4 4 4

= ,

= + ,

= ,

= + ,

D e t k e t c x x e y t y t e

D e t k e t c x e c x e y t e

D e t k e t c x e y t e

D e t k e t c x e y t e

α
τ τ θ δ

α
τ θ τ θ δ

α
τ θ δ

α
τ θ δ

+ − − −

+ −

− +

+

 

where ( )
1 2 3 4 5
, , , ,

T
e e e e e eθ θ θ θ θ θ=  and ( )

1 2 3 4
, , ,

T
e e e e eδ δ δ δ δ=  

are the parameter estimated errors, xiτ = xi(t-τ), i = 1, 2, 3, 
4 are the simple notations. And the error states are subject 
to ˆ

i i ieθ θ θ= − , i = 1, 2, 3, 4, 5, ˆ
j j jeδ δ δ= − , j = 1, 2, 3, 

4, where ( )1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ ˆ, , , ,

T

θ θ θ θ θ θ=  and ( )1 2 3 4
ˆ ˆ ˆ ˆ ˆ, , ,

T

δ δ δ δ δ=  

stand for the estimated vectors of the unknown parameter 
vectors θ and δ, respectively. 

According to Theorem 1, the PLS between the uncertain 
fractional order hyperchaotic systems (17) and (18) can be 
achieved with ki < 0, i = 1, 2, 3, 4. And the unknown 
parameters can be estimated based on the following 
parameter update laws 

( ) ( )
( )
( )

( )
( )

1 1 1 2 1

2 2 1 2

3 2 2 2

4 3 3 3

5 4 4 4

ˆ = ,

ˆ = ,

ˆ = ,

ˆ = ,

ˆ = ,

D c x x e t

D c x e t

D c x e t

D c x e t

D c x e t

α
τ τ

α
τ

α
τ

α
τ

α
τ

θ

θ

θ

θ

θ

−

−

−

−

 

( ) ( )( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 1 1

2 1 2

3 3 3

4 4 4

ˆ = ,

ˆ = ,

ˆ = ,

ˆ = .

D y t y t e t

D y t e t

D y t e t

D y t e t

α

α

α

α

δ

δ

δ

δ

−

−

−

 

For example, when α = 0.96, θ = (35, 7, 12, 3, 0.5)T, δ 

= (10, 28, 8/3, 1)T, x(0)=(1.2, 2.1, 3.1, 0.1)T and y(0) = (12, 
22, 31, 4)T, the drive and response systems (17)-(18) are 

chaotic. Setting τ = 0.08, ( ) ( )ˆ 0 33,10,9, 7, 2.5
Tθ = , 

( ) ( )ˆ 0 13, 24, 23 3, 1.5
Tδ = −  and the scaling matrix C = 

diag{1.5, 1.5, 1.5, 1.5}, the PLS between the fractional 
order hyperchaotic systems (17) and (18) can be realized 

with the matrix K = diag{-33, -36, -38, -35}. The error 

states between systems (17) and (18) are shown in Fig. 8, 
which indicate the PLS is successfully achieved. The 
curves of the parameter estimated errors are displayed in 
Fig. 9. And the estimated values of the unknown 
parameter vectors are shown in Fig. 10, which mean the 

estimated vectors ̂,θ δ̂  converge to the exact values θ = 

(35, 7, 12, 3, 0.5)T and δ = (10, 28, 8/3, 1)T as t → ∞. 
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Fig. 8. The error state curves of the PLS between the fractional order systems (17) and (18) with τ =0.08, ( )ˆ 0θ = (33, 10, 

9, 7, 2.5), ( )ˆ 0δ = (13, 24, 23/3, -1.5), C = diag{1.5, 1.5, 1.5, 1.5} and K = diag{ -33, -36, -38, -35}. 

 

 
(a) 

 
(b) 

Fig. 9. The curves of the parameter estimated errors with τ = 0.08, ( )ˆ 0θ = (33, 10, 9, 7, 2.5), ( )ˆ 0δ = (13, 24, 23/3, -1.5) 

and C = diag{1.5, 1.5, 1.5, 1.5}. 
 

 
(a) 

 
(b) 

Fig. 10. The estimated values of the unknown parameter vectors with τ = 0.08, ( )ˆ 0θ = (33, 10, 9, 7, 2.5), ( )ˆ 0δ = (13, 24, 

23/3, -1.5) and C = diag{1.5, 1.5, 1.5, 1.5}. 
 

IV.  CONCLUSIONS 
 
The PLS of uncertain fractional order chaotic systems is 

investigated based on the stability theorem of linear 
fractional order systems. A nonlinear controller is 
proposed for the response system to synchronize the past 
states of the drive system up to a scaling matrix. And the 

update laws are designed to identify the unknown 
parameters. Both identical and different structural systems 
can be applied to realize the synchronization. Finally, the 
parameter identification and the PLS of the fractional 
order chaotic and hyperchaotic systems with unknown 
parameters are achieved. The effectiveness and feasibility 
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of the advised scheme are verified in the numerical 
simulations. 

It is well-known that the time-delayed characteristics are 
frequently encountered in the engineering application due 
to the transportation lag or the feedback delay. Then, the 
synchronization of time-delayed fractional order chaotic 
systems with unknown parameters will be considered in 
future. 
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