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Abstract – This paper implements the differential transform 

method for a class of integro - differential equations. 

The numerical results obtained agree with other numerical 

methods solutions and is very simple to realize and one can 

obtain solution of arbitrary order of accuracy. 
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I. INTRODUCTION 
 

We consider the nonlinear differential equation in the 

form 

𝑢′′(𝑡) = 𝑃(𝑡, 𝑢, 𝑢′) + 𝑄(𝑡, 𝑢, 𝑢′) ∫ 𝑅(𝑡, 𝑢, 𝑢′(𝑠))
𝑡

0
𝑑𝑠    

where P and Q are polynomials in u and u' and R is a rational 

function with u' only at the numerator. 

Our aim is to prove that the Differential Transform 

Method (DTM) can be applied successfully. 

The DTM is simple to implement compared to numerical 

method found in the literature. It is based on simple 

mathematical tools. 

We outline in this paper the use of DTM in solving the 

class of integro-differential equation arising in the modeling 

of some physical phenomena in mechanics, chemistry, 

biology, epidemiology and others. 

We recall the following elementary properties used in 

defining the method and doing calculations. 

 

II. STRUCTURE OF THE DIFFERENTIAL 

TRANSFORM METHOD 
 

Following the work in [1] and [2] the initial function  

u (t) is supposed analytic in the domain D. 

We defined the differential transform at point 10 to be  

U (k) or some time just denoted Uk by : 

𝑼 =
𝟏

𝒌!
[
𝒅𝒌𝒖(𝒕)

𝒅𝒕𝒌
]

𝒕=𝒕𝒐

                                                          (𝟖) 

The following properties can be easily computed from 

the definition 

𝑃1: 𝑤(𝑡)  =  𝑢(𝑡). 𝑣(𝑡) 

𝑾(𝒌)  =  ∑ 𝑼𝒍𝑽𝒌−𝒍

𝒌

𝒌=𝟎

 

𝑷𝟐: 𝒘(𝒕)  =  𝒂𝒖(𝒕)  +  𝜷𝒗(𝒕) 
 

 

 

𝑊(𝑘) = 𝜶𝑼𝒌  + 𝜶𝑽𝒌 

𝑃3: 𝑤(𝑡)  =  ∫ 𝑣1(𝒔)𝒗2(𝒔)𝒅𝒔
𝑡

0

 

𝑤(𝑘)  =
1

𝑘
∑ 𝑽𝒖𝑽2𝒌−𝑙−1

𝑘−1

𝑘=0

 

𝑃4: 𝑤(𝑡)  =  𝒖𝒎( 𝒕) 

𝑊(𝒌) =  ∑ 𝑼(𝒍)𝑼𝒎−𝟏(𝒌 − 𝟏)

𝒌

𝒍=𝟎

 this can be 𝑖𝑡𝑒𝑟𝑎𝑡𝑒𝑑 

𝑈𝑝𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐷𝑇𝑀 𝑜𝑓 𝑈𝑝(𝑡) 

The inverse formula of the (DTM) for W (k) is given by 

𝑢(𝑡) = ∑ 𝑼𝒌𝒕𝒌∞
𝑘=0   ,                                                                 (9) 

Here we have taken t0 = 0. 

𝐹𝑜𝑟 𝑡ℎ𝑒 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 𝑠𝑒𝑒 [6];  [7] 𝑎𝑛𝑑 [8] 
 

III. APPLICATIONS 

 

Let us consider the following examples that are going to be 

solved by the (DTM) 

Example 1 
Let us consider the following equations: 

𝒖”(𝒕) − 𝟎. 𝟓𝒖′(𝒕)𝒖(𝒕)  +  𝒖(𝒕)  + ∫
𝒖²(𝒔)

(𝟏 + 𝒖𝟐)

𝒕

𝟎

𝒅𝒔

=  𝒇𝟏(𝒕) 
𝑢(0)  =  −1;  𝒖′(0)  =  1 
 

Example 2 

𝒖”(𝒕) − 𝒖𝟑(𝒕)  +  𝟐𝒖′(𝒕) ∫
𝒖(𝒔)𝒖𝟑′(𝒔)

(𝟏 + 𝒖𝟐)

𝒕

𝟎

𝒅𝒔 =  𝒇𝟐(𝒕) 

𝑢(0)  =  1;  𝑢′(0)  =  1 
 

Example 3 

𝒖”(𝒕) − 𝟎. 𝟓𝒖′(𝒕)  +  𝒖(𝒕) ∫
𝒖′𝒖′²(𝒔)

√(𝟏 + 𝒖𝟐)

𝒕

𝟎

𝒅𝒔 =  𝒇𝟑(𝒕) 

 

Example 4 

𝒖”(𝒕) − 𝒖′(𝒕)  +  𝟐𝒖(𝒕) ∫
𝒖′²(𝒔)

√(𝟏 + 𝒖𝟐)

𝒕

𝟎

𝒅𝒔 =  𝒇𝟒(𝒕) 

𝑢(0)  =  1;  𝑢′(0)  =  1 

 
The second member are defined by 
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𝑓1(𝑡) =
−1

2
𝑐𝑜𝑠2𝑡 + ∫

1 − 𝑠𝑖𝑛2𝑠

2𝑠𝑖𝑛2𝑠

𝑡

0

𝑑𝑠 

𝑓1(𝑡) = −2𝑒−𝑡 + 2𝑒−𝑡 (
1

5
𝑒5(−𝑡) −

1

3
𝑒3(−𝑡) + 𝑒−𝑡 +

1

4
𝜋

+ arctan(𝑒𝑡) −
13

15
) 

𝑓3(𝑡) =
1

2
𝑒𝑡 + 𝑒𝑡 ∫

𝑒3𝑠

√1 + 𝑒2𝑠
𝑑𝑠

𝑡

0

 

𝑓3(𝑡) =
1

2
𝑒𝑡 + 𝑒𝑡 (

1

2
𝑙𝑛 (𝑒𝑡 + √𝑒2𝑡 + 1) −

1

2
𝑙𝑛(√2 + 1)

−
1

2
𝑒𝑡√𝑒2𝑡 + 1 +

1

2
√2) 

𝑓4(𝑡) = 𝑒𝑡 + 2𝑡𝑒𝑡 ∫
𝑠²𝑒2𝑠

√1 + 𝑠²𝑒2𝑠

𝑡

0

𝑑𝑠

= 𝑒𝑡 + 2𝑡𝑒𝑡 ∫ 𝑠²
𝑒2𝑠

√𝑠²𝑒2𝑠 + 1

𝑡

0

𝑑𝑠 

 

The exact solution for example 1 is u1(t) = cost- sin t 

For the second example is u2(t)=e-t 

For example 3 

u3(t) = et 

For example 4 

u4(t) = tet 

The solutions are constructed for large values of t and for 

small values of t. 

The kernel of the examples given is in the form 

 K (u, u’) = k1 (u) k2(u’) 

The integral part of the above differential operator can be 

computed using the formula (8) and the properties Pi, i=1, 

2, 3, 4. 

[4], [5], [6] and [7] give more details. 

 

IV. NUMERICAL RESULTS 
 

We take different Kernel (rational) to obtain the same 

exact solutions we obtain very similar results of that of 

Borhanifar [3] given in the table below. In a forthcoming 

paper we are going to give more details on these 

calculations and a complete matlab program for evaluating 

these results. 

 

Table 1 

tjerror → n=5 n=10 n=15 n=20 

0.2 0.8628(-7) 0.5551 (-15) 0.0 0.0 

0.4 .5348(-5) . 1084(-11) 0.0 0.0 

0.6 0.5886(-4) 0.9522(-10) 0.5551 (-16) 0.5551 

 (-11) 

0.8 0.1387(-3) 0.2286(-8) 0.1314(-14) 0.3122 

(-16) 

1 01168(-2) 0.2696(-7) 0.44.90(-13) 0.1110 

(-15) 

Numerical for example 1 

t↓error n=5 n=10 n=15 n=20 

0.2 0.8641 (-7 ) 0.5551 (-15) 0.0 0.0 

0.4 .5379(-5) .1016(-11) 0.2220(-15 ) 0.2220(-15 ) 

0.6 0.5963(-4 ) 0.8654(-10) 0.1110(-15) 0.1110(-15 ) 

0.8 
0.1213(-2 ) 

0.2311 (-7 ) 0.1276 

(-14 ) 
0.1110(-15 ) 

1 0.3263(-3 ) 0.2016(-8) 0.4501(-13) 0.0 

 Numerical results for example 2  

  Table 3  

t↓error n=5 n=10 n=15 n=20 

0.2 0.9149(-7) 0.6661 (-15) 0.2220 

(-15) 

0.2220(-15 ) 

0.4 0.6030(-5 ) . 1087 (-11 ) 0.2220(-15 

) 

0.2220(-15 ) 

0.6 0.7080(-4 ) 0.9576(-10) 0.2220(-14) 0.2220(-15 ) 

0.8 0.4102(-3 ) 0.2304(-8 ) 0.1332(-14 ) 0.0 

1 01615(-2) 0.2731 (-7 ) 0.5062(-13 

) 

0.0 

 Numerical results for example 3 

 

 

  Table 4  

t↓error n=5 n=10 n=15 n=20 

0.2 0.8629(-7 ) 
0.1387(-15) 0.5551 

 (-16) 
0.5551 (-16 ) 

0.4 0.2412(-5 ) 0.4348(-12) 0.1110(-15) 0.1110(-15 ) 

0.6 0.4248(-4 ) 0.5739(-10) 0.2220(-15) 0.2220(-15 ) 

0.8 0.3282(-3 ) 0.1843(-8 ) 0.1110(-14 ) 0.0 

1 01615(-2) 
0.2731 (-7 ) 0.5062(-13 

) 
0.0 

 Numerical results for example 4  
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V. CONCLUSION 
 

The aim of this paper was to confirm through some 

examples make of rational function in u and u' the validity 

of the Differential Transform method for such integro-

differential equations. 

The aim has been achieved through the numerical results 

obtained. 
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