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Abstract — This article analyses a Markovian queueing 

system M/(M1,M2,M3)/3/(B1,B2) with stalling. It stalls 

customers ofqueue-1 into a finite buffer B1of maximum size 

‘K< ∞’and accommodates all other waiting customers 

ofqueue-2 into an infinite buffer B2. There are three 

heterogeneous servers labelled as ‘S1, S2 and S3’ with 

exponential rates μ1, μ2, and μ3 respectively where μ1>μ2> μ3. 

Arrivals occur according to a Poisson process with mean 

arrival rateλ. Main focus is on the steady state queue length 

distribution which consists of two stages.Instage-1, ‘Queue 

Length’ process of the finite M/(M1,M2,M3)/3/(B1,3) system  is 

formulated as a Quasi-Birth and Death process in a three 

dimensional finite state space. The stationary probability 

vector of the queue length is obtained using matrix 

analyticalmethods. In stage-2, using analytical methods, stage-

1 results obtained on the finite queue length are linked to the 

infinite queue length process of the M/ (M1,M2,M3)/ 3/(B1,B2) 

system subject to a condition ρ=(λ/μ)<1 where μ= μ1+ μ2+μ3. 

Further steady state expressions are found for some of the 

performance measures such as the expected queue length, the 

probability that each server is busy etc. Results for some 

special systems have been obtained from these computational 

methods. A numerical study is then carried out to support the 

advantages of the proposed methodology. 
 

Keywords — Generator Matrix, Heterogeneous Servers, 

Mean Queue Length, Stationary Probability Vector and 

Quasi-Birth-Death Process. 

 

I. INTRODUCTION  
 

This paper describes a Markovian queueing system 

M/(M1,M2, M3)/3/(B1,B2) with stalling. It is operated by 

three heterogeneous servers called S1, S2 and S3. Service 

time distribution of the server Sj follows exponential 

distribution with mean (1/μj) for j=1, 2, and 3 which satisfy 

a condition μ1>μ2>μ3. Inter-arrival times also follow an 

exponential distribution with mean (1/λ). Assumption is 

that these inter-arrival times and service times are 

independently distributed random variables. 

A. Queue Discipline 

An arriving customer occupies S1 server if idle or 

otherwise joins the queue-1 given that the queue-1 

formation in buffer B1 of size ‘K< ∞’ is not full. Non-empty 

buffer B1 feeds customers one by one to the server S1 at each 

time epoch when the S1 server finishes a service.  

If an arrival occurs at a time point when queue-1 is full 

(i.e. possible if server S1 is busy) and there are more than 

one idle servers, it occupies that idle server with the lowest 

number or otherwise joins the free server if any. If the 

system has (K+3) or more number of customers at a 

customer’s arrival epoch, it joins the buffer B2 to form 

queue-2.  

When the server S1 finishes a service, it serves the next 

customer in queue-1 (if there is one; otherwise it idles) and 

the customer at the top of queue-2 (if there is one) leaves 

queue-2 and joins queue-1. At each service completion 

epoch either of the slow servers S2 and S3, serves the next 

customer in queue-2 (if there is one; otherwise it idles). 

Thus queue-2 feeds both queue-1 and the slow servers S2 

and S3 whichever could first accept the head-of-the-line 

customer of queue-2.  

Under parallel configuration, S1 works faster than S2 and 

S2 works faster than S3. Considered here is that customers 

are of informed types. Hence customers have to wait in 

buffer B1 at times even when the slow servers S2 and S3 are 

free, until B1 becomes full. Buffer B2 accommodates all 

other arriving customers at time instances when B1 is full 

and all three servers are busy i.e. when the system size 

exceeds (K+3). It is assumed that waiting customers form 

queue-1 and queue-2 according to their order of arrival. One 

aim of this paper is to compare the steady state results of the 

Markovian queueing system M/(M1,M2, M3)/3/(B1,B2) with 

that of the steady state characteristics of the system 

M/M/3/(B1,B2). 

The queue discipline that governs how each customer on 

its arrival epoch makes decision  and how customers are 

buffered while waiting to be dispatched  is described 

depending on the following ‘Five’ mutually exclusive 

events Ej for j=1 2, 3, 4 and 5 observed by  a monitoring 

device of server S1 and the buffer B1: 

E1:  Server S1 is idle or S1 just completes a service  

E2:  Server S1 is busy and queue-1 (0< queue-1<K) is not 

full (i.e. B1 has less than K customers) 

E3:  queue-1 has exactly K customers and both slow servers 

S2 and S3 are free 

E4:  queue-1 has exactly K and one of the two slow servers 

S2 and S3 is alone free 

E5:  the system has (K+3) or more number of customers 

Decision of an arriving customer that can happen during 

an infinitesimal period subsequent to Ej will be as below: 

(i) E1 event,  joins server S1 if queue-1 is empty 

(ii) E2 event, joins queue-1 

(iii) E3 event, joins server S2 

(iv) E4 event,  joins the free server who is available 

among S2 and S3 

(v) E5 event, joins queue-2 

Dispatching rule for a customer either from queue-1>0 or 

from queue-2>0that can happen during an infinitesimal 

period just after a service completion by any one of the 

servers ‘S1, S2 and S3’ will be as below: 

(i) E1 event, a customer is dispatched from queue-1 to 

server S1 

(ii) E2 event, a customer is dispatched from queue-1 to 

server S1 

(iii) E3 event, a customer is dispatched from queue-2 to 

server S2 

(iv) E4 event, a customer is dispatched from queue-2 to 

the slow server who, just, completes her service  
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(v) E5 event, a customer is dispatched either from 

queue-1 to the fast sever S1 and then queue-1 

accepts a customer from queue-2 instantaneously 

or from queue-2 to the slow server (S2 or S3) who, 

just, completes her service 

It is observed that server S1 will be continuously busy as 

long as queue-1 has at least one stalled customer. Further, 

if a customer arrives at an instance when the length of 

queue-1 is K and both of the two slow servers are idle, then 

it occupies idle server S2.  

The graphical representation of the M/(M1,M2, 

M3)/3/(B1,B2)  queue is drawn in Figure1. 

 

 
A typical methodology is developed to obtain the 

stationary queue length distribution in two stages: Stage-1 

deals with the finite capacity queue M/ (M1, M2, M3/3/ (B1, 

3).Formulating the queue length (queue +service) process 

as a QBD processes, steady state results to state 

probabilities and mean queue length  have been obtained 

using matrix-analytical methods. For the determination of 

the `K+3' boundary characteristics of stage-1 substantial 

effort is taken by solving the equations satisfied by sub-

matrices of the generator matrixQ of the QBD process. 

Exploiting the Markov property of the QBD process, stage-

1 results are linked to the stage-2 which helps to obtain the 

whole queue length distribution of M/(M1,M2, M3/3/(B1,B2) 

queue with staling and other characteristics as compact and 

closed form expressions. Results of the proposed queueing 

system with stalling have viable applications in the area of 

computer networks and manufacturing industries.  

Reference [1] studied waiting lines with heterogeneous 

servers where the new customer is dispatched to any server 

if all the servers are busy. In [2], Krishnamoorthi 

investigated a Poisson queue with one fast and one slow 

server operating under ‘Fist Come Fist Served’ queue 

discipline. An optimal control policy was established in [3] 

for a queuing system with two heterogeneous Servers. 

In [4]-[5], Rubinovitch studied the problem of a 

heterogeneous two channel queueing systems with no- 

stalling and stalling respectively and gave conditions when 

to discard the slow server. The literature about fast and slow 

server queueing systems is growing steadily. A simple  

approach for installing slow server issues is used in [6] 

while the slow server problem is discussed in [7] for 

uninformed customers.An efficient way of managing 

queues with heterogeneous servers is explored in [8]. In [9]-

[10], Singh studied a simple queue with two heterogeneous 

servers with infiniteand finite waiting spaces. His emphasis 

was on comparing the two-server heterogeneous M/Mn/2/N 

and homogeneous M/M/2/N systems. Using the optimal 

service rates, the average characteristics of the 

heterogeneous system are minimized, and their 

improvement over the corresponding homogeneous system 

characteristics is established.  Authors of [11] have 

provided analysis for an M/G/2 queue operating under 

FCFS (First Come First Served) queue discipline. 

Unless a multi-server queuing system is mechanically 

controlled, the case of heterogeneous servers is more 

applicable in practice. If the servers have equal service 

rates, the situation is referred to as a queuing system with 

homogeneous servers, or otherwise as a queuing system 

with heterogeneous servers. 

B. Motivating Factors 
The motivating example for this work is power 

management in data centres, where we have a fixed power 

budget P and a server farm consisting of three servers. Wise 

decision is needed on how much power to allocate to each 

server, so as to minimize overall mean response time for 

jobs arriving at the server farm. It isremarked that themore 

power we allocate to a server, the faster it runs (the higher 

its frequency), and subject to some maximum possible 

frequency and some minimum power level needed just to 

turn the server on. 

There is a monitor that specifies the relationship between 

the quanta of power allocated to a server and the speed 

(frequency) at which it runs. To answer the question on how 

to allocate power, we need to think about whether we prefer 

many slow servers (allocate just a little power to every 

server) or a few fast ones (distribute all the power among a 

small number of servers). In this application, the three 

server problem which is presented in this article could be 

used to optimally answer our question under a wide variety 

of parameter settings. For similar applications on power 

allocation problem from a CPU (Central Processing Unit), 

details are found in Sivasamy et al. [12]-[13]. In [14],  

several threshold properties of a Poisson queue with a T-

policy are studied. 

In section II, matrix analytic method is used to analyse 

the M /Mn/3/(B1, 3) queues with staling. Section III deals 

with M/(M1,M2,M3)/3/(B1,B2) with stalling for informed 

customers. Section IVpresents a comparative study between 

the results of M/Mn/3 and M/M/3 queues.  Section V 

provides a summary of results and future scope. 

 

II. MODIFIED LOSS SYSTEM: M /MN/3/(B1, 3) 

QUEUES  
 

 Let X1(t) be the number of customers available in the 

buffer B1 B2 and with the fast server S1 at time t>= 0.  

Also let Xj(t) be the number of customers present with 

Server-j for j=2 and 3 at time t>= 0.   The vector process 

X(t) =(X1(t), X2(t), X3(t): t  0) defined on the Cartesian 

product space  ={0, 1,2,…K+1) }x(0,1)x(0,1)} is 

aperiodic and positive recurrent if ρ= λ/(μ1+ μ2+ μ3)<1.  

A. Generator Matrix Q 
Assume that buffer B2 is removed or empty from the 
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system described in Figure1. Thus the queue length (queue 

+ service) process X (t) of the modified loss system M/ 

(M1,M2,M3)/3/(B1,3) forms a quasi-birth-and-death (QBD) 

process on a finite portioned form of three dimensional 

space  : 

 ={ L(n) : n=0, 1, …, K+1} , where  

L(n)=( (n,0,0), (n,1,0), (n,0,1), (n,1,1) )                       …(1) 

 

Define:   λ1=λ+μ1 ,   λ2=λ+μ2,   λ3=λ+μ3,  λ12= λ+μ1+μ2 , 

λ13=λ+μ1+μ3, λ23=λ+μ2+μ3, λ123= λ+μ1+μ2+μ3and 

μ=μ1+μ2+μ3. Then the  infinitesimal generator matrix Q of 

the QBD process is then given by  

Q 

= 

 

(0) (0)

1 0

(1) (1) (1)

2 1 0

(2) (2) (2)

2 1 0

( ) ( ) ( )

2 1 0

( 1) ( 1)

2 1

(1) (1) (1) ... ( 1) ( ) ( 1)

(0) ...

(1) ...

(2) ...
.

. . . . ...

. . . .

( ) ..

( 1) ...

K K K

K K

L L L L K L K L K

L

L

L

L K

L K  

  
 
 
 
 
 
 
 
 
 
 
  

A A 0 0 0 0

A A A 0 0 0

0 A A A 0 0

0 0 0

0 0 0 0

0 0 0 A A A

0 0 0 0 A A
 

 

All component matrices Aj
(.)for j=0, 1 and 2 of the 

generator Q are given by  

A1
(0) 

= 2 2

3 3

3 2 23

(0,0,0) (0,1,0) (0,0,1) (0,1,1)

(0,0,0) 0 0 0

(0,1,0) 0 0

(0,0,1) 0 0

(0,1,1) 0



 

 

  

 
 

 
 
 

 
    

For n=0,1,…,(K),  

 

A0
(n) = 

 

( 1,0,0) ( 1,1,0) ( 1,0,1) ( 1,1,1)

( ,0,0) 0 0 0

( ,1,0) 0 0 0

( ,0,1) 0 0 0

( ,1,1) 0 0 0

n n n n

n

n

n

n









    
 
 
 
 
 
 
 

 

For n=1,2, … (K),  

A1
(n)= 

1

2 12

3 13

3 2 123

( ,0,0) ( ,1,0) ( ,0,1) ( ,1,1)

( ,0,0) 0 0 0

( ,1,0) 0 0

( ,0,1) 0 0

( ,1,1) 0

n n n n

n

n

n

n



 

 

  

 
 

 
 
 

 
  
 

and for n=K+1 

 

A1
(K+1)= 

1

2 12

3 13

3 2

( 1,0,0) ( 1,1,0) ( 1,0,1) ( 1,1,1)

( 1,0,0) 0 0

( 1,1,0) 0

( 1,0,1) 0

( 1,1,1) 0

K K K K

K

K

K

K

 

  

  

  

    
 

  
  
 

  
   
 

For n=1, 2, …,(K+1) 

 

A2
(n)

= 

1

1

1

1

( 1,0,0) ( 1,1,0) ( 1,0,1) ( 1,1,1)

( ,0,0) 0 0 0

( ,1,0) 0 0 0

( ,0,1) 0 0 0

( ,1,1) 0 0 0

n n n n

n

n

n

n









    
 
 
 
 
 
 
 

 

All other ‘0’ entries of Q matrix are zero matrices 

 

B. Stationary Probability Vector 

,0,0 ,1,0 ,0,1 ,1,1Let ( , , , )n n n n n   Π be a four 

component row vector of probability values of the states 

occupied by the QBD process X(t) in the long run.Alsoeach 

    n,i, j limP t n,i, j
t




 X
 

exists and is defined  for n=0,1,…,K+1, i=0,1 and j=0,1. 

Thus  

0 1 1( , ,..., )KΠ Π Π Π
 

represents the stationary probability vector of the QBD 

process X (t). Let 
4( 1)  K1 be a column vector of unit 

values and 
T =(1,1,1,1)e  be another column vector of 

size 4. This  Π  vector can be determined by solving  

  Π Q 0  

subject to the normalizing condition 
1

0

   1
K

n

n





 Π 1 Π e

. 

Following a modified procedure by cutting the levels off 

starting from the upper level L(K+1) and moving down to 

the lowest level L(0) for the generator matrix Q developed 

from that of Latouche and Ramasamy[15],  one can show 

that the stationary probability vector  Π  has a matrix-

geometric solution given by   

0 0

(n)

1

1

0

 =

   for n=1, 2, ..., (K+1)

   1

n n

K

n

n









 

Π U 0

Π Π R

Π 1 Π e

 
( 1) ( 1)

1where K K U A ,  

( ) ( ) ( ) ( 1) 1 ( 1)

1 0 2( )n n n n n    U A A U A
 for n= K, K-1 , 

…, 1 and 0  
( ) ( 1) ( ) 1

0and ( )n n n  R A U for n=1, 2,… ,( K+1). 
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It is remarked that the final vector ‘  'Π is normalised by 
1(  )Π 1 Π . The last equation of the system   Π Q 0  

or 
1

0 1 1  A  A  =K K

K K



Π Π 0   is given by 

λ πK11 + λ π(K+1)10 +λ π(K+1)01=   (μ1 +μ2 + μ3 ) π(K+1)11… (4) 

Rewriting (4), it is seen that 

π(K+1)11= ρ ( πK11 + π(K+1)10 +π(K+1)01)                    …(5) 

Further the marginal distribution {an= P(X1(t)=n: n=0, 1, 

…, (K+1) } of X1(t)  that represents the queue length 

process in an M/Mn/1/(K+1) loss system (see Baily(1957) )  

is given by   
1

1 1

, , ( 2)
, 0 1

(1 )
,    n=0,1,2,...,(K+1)                     ...(6)

1

n

n n i j K
i j

a
 


 




 




 

where 
1

1

 





 .   

The values of the marginal probabilities  

 b0= P(both slow servers S2 and S3 are idle),  

 b1= P( slow servers S2 alone is busy) ,  

b2= P( slow servers S3 alone is busy) ,  and  

b12= P( Both slow servers S2 and S3 are busy)  

are given by 
1 1 1

0 00 1 10 2 01

0 0 0

,  ,  ,  
K K K

n n n

n n n

b b b  
  

  

      

1

12 11 0 1 2 12

0

and ,  b +b +b +b =1  

   

K

n

n

b 




  

Thus the expected number of customers in the system, say 

L(K+2), is obtained as  
1

( 1) 1 2 12

0

L   + b  + b  + 2  b                             ...(7)
K

K n

n

n a








Computational Complexity: In the finite case (i.e. K<∞), 

elements of U(i) matrices depend on the levels since there is 

a finite upper boundary (K+1) in the generator Q. Further 

this algorithm suffers from a computational complexity 

which amounts to O(4(K+1)). 

III. M/(M1,M2 M3)/2/(B1,B2) QUEUE WITH 

STALLING INTO B1 BUFFER 
 

Replacing the vector process X(t) =(X1(t), X2(t), X3(t): t

  0) defined on the space  ={0,1,2,…K+1) 

}x(0,1)x(0,1)} by Y(t)=(Y1(t),Y2(t), Y3(t): t 0 ) process 

defined on the full space W=  U{K+4,K+5,…,∞} to 

monitor the transitions of queue with stalling described in 

Fig.1.  

A. Linking of Infinite Queue Length with Finite 

Queue 
For this extension, there exists a proportionality constant, 

say β, expected to be a function of K such that 

αnij= β  πnij                                                                                              …(8) 

for n=0,1,2,...,(K+1),  i=0,1 and j=0,1 

pn

1

, 0

 ni j

i j




 for      0,1,2,...,(K+1)                           …(9) 

pn=α(K+1)11ρn-(K+3)   for n>(K+3)                             …(10) 

Hence the normalizing condition 
1

0 4

 1
K

n n

n n K

p p
 

  

   , 

Now, using the facts 

1 1 1

, ,

0 0 , 0

 
K K

n n i j

n n i j

a 
 

  

  =1, and 

π(K+1)11= ρ ( πK11 + π(K+1)10 +π(K+1)01) given by(5) , it is 

obtained that   

β=

( 1)11

1
 
1  K



   



 
                                     … ( 11 ) 

 

Further, fraction D2 of the time Server-2 is busy is given 

by  

D2=β[b1]                                                                …(12) 

Fraction D3 of the time Server-3 is busy is given by  

D3=β[b2]                                                                 …(13) 

Fraction D23 of the time both Server-2 and Server-3 are 

busy is given by  

D23=β[b12+(ρπ(K+1)11)/(1.0-ρ)]                                …(14) 

Fraction D0 of the time both Server-2 and Server-3 are 

idle is given by  

D0=βb0                                                                                                …(15) 

Fraction of the time Server-1 is idle is Da0= β [a0] and 

Fraction of the time Server-1 is busy is  

Da1=β[1-a0]+β{(ρπ(K+1)11)/(1.0-ρ)]                         …(16) 

The mean number E(L) of customers in the system is 

given by  

E(L)=β[L(K+1)+π(K+1)11ρ{(K+4)(1-ρ)+ρ}/(1-ρ)2]         …(17)   

 

B. Distribution of the System Size 
Let the probability of finding the system size (queue + 

service) at ‘n’ beqn for n=0,1,2,…,∞. Then this distribution 

{qn} of system size can be obtained from {αnij } values as 

follows: 

 

q0= P(idle system)=βπ00 

q1= P( system size is 1)=  β (π100 + π010 + π001) 

qn= P( system size is n)=β( πn00 + π n-110 + πn-101 + π n-211) for 

n=2, 3, 4, …(K+1) 

qK+2= P( system size is (K+2) ) 

=β( π (K+1)10 + π (K+1)01+ πK11) 

qK+3= P( system size is (K+3) )=  β π(K+1)11 

= ρ qK+2 by using (5) 
qn= P( system size is n)=   

qK+2ρn-(K+2) for  n=(K+3),(K+4) …, ∞                        …(18) 

 

An alternative method of finding the mean number of 

customers in the system is E(L)= n

0

  q
n

n




  

=

2

n

0

  q
K

n

n




 + qK+2[K+3)-(K+2)ρ]ρ/(1- ρ)2           …(19)    

By assigning K=0 in (18) and (19) one can deduce the 

corresponding steady state distribution of the number of 

customers in the three server heterogeneous system of 

M/Mi/3 queues and its mean value respectively as studied 

by Singh[9].  
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IV. COMPARISON OF M/MN/3 AND M/M/3 

QUEUES 

 

In order to compare the steady state results of 

homogeneous M/M/3 and non-homogenous M/Mn/3 

queueing systems, a criterion is suggested[1] as below: 

If µn (n=1, 2, 3) are the service rates of the three servers 

S1, S2 and S3 of the heterogeneous system M/Mn/3, then the 

service rate for each server of the homogeneous system 

M/M/3 is the average service rate 
1 2 3 

3

  


 
 .  

For an illustration, the input parameter values are selected 

at random as λ=0.9384, µ1=0.38, µ2=0.37, and µ3=0.27. It 

is noted that ρ=0.92 since µ=0.34.Corresponding output 

relating to a few steady state characteristics of both systems 

for this specific case are computed numerically and 

reported in Table 1 and Table 2.  

 

Table 1: Results for NH and H systems  

when λ=0.9384, µ1=0.38, µ2=0.37, and µ3=0.27. 
 NH H NH H 

 
 

K=3 

h0=0.0221 
 

 

h0=0.0217 
 

 

b0=0.2021 

b1=0.2165 
b2=0.1482 

b12=0.4332 

b0=0.1963 

b1=0.2409 
b2=0.1227 

b12=0.4400 

 

 

K=2 

h0=0.0421 

 

 

h0=0.0286 

 

 

b0=0.1869 

b1=0.2091 

b2=0.1475 

b12=0.4565 

b0=0.1822 

b1=0.2348 

b1=0.1226 

b12=0.4604 

 

 

K=1 

h0=0.0284 

 

 

h0=0.0231 

 

 

b0=0.1608 
b1=0.1945 

b2=0.1432  

b3=0.5015 

b0=0.1603 
b1=0.2237 

b2=0.1209 

b12=0.4951 

Condition h0(NH) > h0(H) 
b0(NH)>b0(H), 
b1(NH)<b1(H), 

 

Such numerical results of the two systems are distinguished 

using short symbols NH and H for the results of 

heterogeneous and homogeneous systems respectively. 

 

Table 2: Mean System Size for NH and H systems 

when λ=0.9384, µ1=0.38, µ2=0.37, and µ3=0.27. 

 NH H NH H 

K=3 

E(a)=1.12 

E(b)=1,23 
2.35 

E(a)=1.51 

E(b)=1.24 
2.75 

 
E(L)=7.78 

 
E(L)=10.13 

 

K=2 

E(a)=0.99 

E(b)=1,27 

2.26 

E(a)=1.24 

E(b)=1.28 

2.52 

 
E(L)=9.90 

 
E(L)=11.23 

 

K=1 

E(a)=0.80 

E(b)=1.34 

2.14 

E(a)=0.92 

E(b)=1.34 

2.26 

 
E(L)=11.82 

 
E(L)=12.21 

 Observed Condition E(L)(NH)<E(L)(H) 

If the mean number of customers E(L)= n

0

  q
n

n




 of the 

heterogeneous (NH) system is smaller than the 

corresponding homogeneous H system when both of the 

systems operate under the same ρ<1 across the values of  

K>0, it is concluded that the former system NH performs 

better than the latter system. The following conditions 

ensure that a three server heterogeneous system performs 

better than the corresponding homogeneous system: 

(i) q0(NH) > q0(H) 

(ii) b0(NH) >b0(H), b1(NH) < b1(H) 

(iii) [E(a)+E(b)](NH)< [E(a)+E(b)](H) 

where E(a)= 

1

0

  
K

n

n

n a




  and E(b)=b1+b2+2b12 

Since from the matrix geometric solution  Π and hence 

from the stationary distribution {qn: n=0,1,…,∞}, it is not 

easy to obtain scalar expressions for the components of Π  

as functions λ and ρ , the above conditions (i) to (iii) have 

been established numerically. There is little scope to see 

three server homogeneous systems in real life applications 

as compared with heterogeneous type of queueing problems.  

Nevertheless, heterogeneous class of queueing models have 

grater scope in dynamic routing of messages arriving at the 

buffers and then dispatched to one of the computer systems 

belonging to a communication network for its transmission 

towards a destination (see[3] ) 

 

V. CONCLUSION 
 

This paper analyses a Markovian queuing system 

M/Mn/3/(B1,B2) with stalling.In this work, both scalar 

analytical and matrix analytical methods have been used for 

studying the prosed queueing systems with heterogeneous 

service times. If µi, is the service rate of the 

ith(heterogeneous) server for i= 1, 2  and 3, then a queue 

discipline of threshold type is formulated to stall the 

arriving customers in  queue-1 and to accommodate the 

waiting customers in queue-2 with a despatching rule from 

the two queues to the servers.  For the case of informed 

customers,describing the ‘Queue Length’ process of the 

system M/ (M1,M2,M3)/3/(B1,3) as a QBD process, 

stationary probability distribution of the queue length and 

performance measures such as the expected queue length, 

the probability that each server is busy have been obtained. 

Further,assuming ρ=(λ/μ)<1 where λ=mean arrival rate, and  

μ= μ1+ μ2+μ3,  all these results  are linked to the infinite 

queue length process of M/(M1,M2,M3)/3/(B1,B2) system.   

To support advantages of these results, a numerical study 

is then carried out. Conditions are established for a better 

performance of the three server heterogeneous system over 

the three server homogeneous system. 
There is much scope to extend this queueing model with 

staling of customers  by allowing the fast server to render 

service in batches or allowing the faster server to provide 

service with a general service time distribution. 
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