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Abstract – In this article, the integrals ∫
𝑠𝑖𝑛 𝑥

𝑥𝑝

∞

0
𝑑𝑥  and 

∫
𝑐𝑜𝑠 𝑥

𝑥𝑝

∞

0
𝑑𝑥 are evaluated by using Laplace transform method 

different from the previous methods where 𝟎 < 𝑝 < 1.  
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I. INTRODUCTION  
 

The integrals  

 

∫
𝑠𝑖𝑛 𝑥

𝑥𝑝

∞

0
𝑑𝑥  and   ∫

𝑐𝑜𝑠 𝑥

𝑥𝑝

∞

0
𝑑𝑥                            (1) 

 
are presented in [1] where 0 < 𝑝 < 1. However, nothing 

has been said about their evaluations. For these types of 

integrals and their evaluations including complex versions, 

see [1–12, 15]. 

 

The integrals in (1) also play a very important role in 

signal processing [13, 14]. We aim to report evaluations of 

the integrals in (1) by using Laplace transform. Some 

properties related to (1) are addressed. 

 

Let F(t) be a real or complex function for t > 0 and 

s  is a real or complex parameter. Then the Laplace 

transform of  F(t) is defined by  

 

 𝐿[𝐹(𝑡)] = 𝑓(𝑠) = ∫ 𝐹(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
, 

 

we assume that this integral exists. For the Laplace 

transform and Lemma 1-Lemma 5, see [1, 2, 7, 8]. 

 

Lemma 1 
 For 𝑠 > 0 

 

𝐿[𝑡𝑛] =
𝛤(𝑛+1)

𝑠𝑛+1                                                            (2) 

 

where the gamma function Γ(n) is defined for n > 0 
 

𝛤(𝑛) = ∫ 𝑡𝑛−1𝑒−𝑡𝑑𝑡
∞

0
. 

 

Lemma 2  
 For  𝑠 > 0  and   𝑎   constant 

 

 𝐿[𝑠𝑖𝑛 (𝑎𝑡)] =
𝑎

𝑠2+𝑎2.                                                (3)         

 

Lemma 3 

     If 𝑚 and 𝑛 are positive then the Beta function 𝐵(𝑚, 𝑛), 
its relation to 𝛤(), is defined by   

 
  𝐵(𝑚,𝑛)   =∫ 𝑥𝑚−1(1−𝑥)𝑛−1∞

0

=
 𝛤(𝑚)𝛤(𝑛)

 𝛤(𝑚+𝑛)
.

                                         (4) 

 

Lemma 4  
   For positive  𝑚 and 𝑛 

 

 𝐵(𝑚, 𝑛) = 2 ∫ 𝑠𝑖𝑛2𝑚−1𝜃𝑐𝑜𝑠2𝑛−1𝜃
𝜋

2
0

𝑑𝜃.            (5) 

 

Lemma 5 
     If 𝑝 is not an integer numbers then 

 

 𝛤(1 − 𝑝)𝛤(𝑝) =
𝜋

𝑠𝑖𝑛 (𝑝𝜋)
  and  𝛤 (

1

2
) = √𝜋.        (6) 

 

II. MAIN RESULTS 
 

Theorem 6  
     If  0 < 𝑝 < 1  then one obtains  

 

∫
𝑠𝑖𝑛 𝑥

𝑥𝑝

∞

0
𝑑𝑥 =

𝜋

2𝛤(𝑝) 𝑠𝑖𝑛(
𝑝𝜋

2
)
. 

 

Proof :  

Set  𝐹(𝑡) = ∫
𝑠𝑖𝑛(𝑡𝑥)

𝑥𝑝

∞

0
𝑑𝑥  then 

 
 

𝐿[𝐹(𝑡)] = ∫  (∫
𝑠𝑖𝑛(𝑡𝑥)

𝑥𝑝

∞

0
𝑑𝑥)

∞

0
𝑒−𝑠𝑡 𝑑𝑡 (by defn.) 

     

= ∫  (∫ 𝑠𝑖𝑛(𝑡𝑥) 𝑒−𝑠𝑡∞

0
𝑑𝑡)

∞

0
𝑥−𝑝 𝑑𝑥  (by using (3)) 

 
 

= ∫
𝑥

𝑥𝑝(𝑠2+𝑥2)

∞

0
 𝑑𝑥 (by setting  𝑥 = 𝑠 𝑡𝑎𝑛(𝜃) 

 
 

= 𝑠−𝑝 ∫ 𝑡𝑎𝑛1−𝑝𝜃

𝜋
2

0

 𝑑𝜃 

 
 

= 𝑠−𝑝 ∫ 𝑠𝑖𝑛1−𝑝𝜃𝑐𝑜𝑠1−𝑝𝜃
𝜋

2
0

 𝑑𝜃  (by using (5))  
 
 

= 𝑠−𝑝
𝐵(

2−𝑝

2
,
𝑝

2
)

2
  (by using (4)) 

 
 

= 𝑠−𝑝
𝛤(

2−𝑝

2
)𝛤(

𝑝

2
)

2𝛤(1)
  (by using (6)) 

 
 

= 𝑠−𝑝 𝜋

2𝛤(𝑝) 𝑠𝑖𝑛(
𝑝𝜋

2
)
  

 

 Taking inverse Laplace transform by using (2) one 

obtains 
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𝐹(𝑡) = ∫
𝑠𝑖𝑛(𝑡𝑥)

𝑥𝑝

∞

0

𝑑𝑥 

 

=
𝑡𝑝−1𝜋

2𝛤(𝑝)𝑠𝑖𝑛 (
𝑝𝜋
2

)
 

 

 

and setting 𝑡 = 1. One obtains the desired result 

 

Corollary 1 
 

 If  𝑝 = 1 then one obtains  

 

𝑆𝑖(∞) = ∫
𝑠𝑖𝑛 𝑥

𝑥

∞

0
𝑑𝑥 =

𝜋

2
. 

 

For complex version of this integral and its evaluation, 

see [4, 5, 11, 12]. 

 

Corollary 2  
 

 If  𝑝 =
1

2
   then one obtains Fresnel integral 

 

∫  
∞

0
𝑠𝑖𝑛 𝑥2  𝑑𝑥 =

1

2
√

𝜋

2
. 

 
For complex version of Fresnel integrals and their 

evaluations, see [1, 6, 12]. 

 

Corollary 3  
 

 If  𝑝 =
1

3
    then one obtains 

 

∫  
∞

0
𝑥 𝑠𝑖𝑛 𝑥3  𝑑𝑥 =

2𝜋

3𝛤(
1

3
)
. 

 

Corollary 4  

 If  𝑝 =
1

6
      then one obtains 

 

∫  
∞

0
𝑥4 𝑠𝑖𝑛 𝑥6  𝑑𝑥 =

𝜋

12𝛤(
1

6
)𝑠𝑖𝑛 (

𝜋

12
)
 . 

 

Corollary 5  
 

 If  𝑝 =
2

3
      then one obtains 

 

∫  
∞

0
𝑥−

1

2 𝑠𝑖𝑛 𝑥
3

2  𝑑𝑥 =
2𝜋

3√3𝛤(
2

3
)
. 

 
Corollary 6 

 

 If  𝑝 =
5

6
      then one obtains 

 

∫  
∞

0
𝑥−

4

5 𝑠𝑖𝑛 𝑥
6

5  𝑑𝑥 =
3𝜋

5𝛤(
5

6
)𝑠𝑖𝑛 (

5𝜋

12
)
. 

 
Theorem 7  

 If  0 < 𝑝 < 1  then one obtains 

 

∫
𝑐𝑜𝑠 𝑥

𝑥𝑝

∞

0
𝑑𝑥 =

𝜋

2𝛤(𝑝) 𝑐𝑜𝑠(
𝑝𝜋

2
)
. 

 
Proof :  

Proof is the same as Theorem 6. So we omit it. 

 

Corollary 7 
  

 If 𝑝 = 1 then one obtains 

 

∫
𝑐𝑜𝑠 𝑥

𝑥

∞

0+

𝑑𝑥 + 𝑙𝑛(𝑥) = −𝛾 
 

 

where  𝛾 is an Euler constant, for a nice proof see [5]. 

 

Corollary 8 
 

 If 𝑝 =
1

2
   then one obtains Fresnel integral 

 

∫  
∞

0
𝑐𝑜𝑠 𝑥2  𝑑𝑥 =

1

2
√

𝜋

2
. 

 
Corollary 9 
 

 If  𝑝 =
1

3
  then one obtains 

 

∫  
∞

0
𝑥 𝑐𝑜𝑠 𝑥3  𝑑𝑥 =

𝜋

3√3 𝛤(
1

3
)
. 

 
Corollary 10  
 

 If 𝑝 =
1

6
  then one obtains  

 

∫  
∞

0
𝑥4 𝑐𝑜𝑠 𝑥6  𝑑𝑥 =

𝜋

12𝛤(
1

6
)𝑐𝑜𝑠 (

𝜋

12
)
 . 

 
Corollary 11  
 

 If  𝑝 =
2

3
    then one obtains 

 

∫  
∞

0
𝑥−

1

2 𝑐𝑜𝑠 𝑥
3

2  𝑑𝑥 =
2𝜋

3𝛤(
2

3
)
.  

 
Corollary 12  

 

 If  𝑝 =
5

6
   then one obtains  

 

∫  
∞

0
𝑥−

4

5 𝑐𝑜𝑠 𝑥
6

5  𝑑𝑥 =
5𝜋

12𝛤(
5

6
)𝑐𝑜𝑠 (

5𝜋

12
)
. 

 

III. SOME PROPERTIES OF 𝒔(𝒑)  AND  𝒄(𝒑)   

 

Theorem 8 

 If s(p) =
π

   2Γ (p) sin  (
pπ

2
)
 for 0 < 𝑝 < 1  then one 

obtains 

 

𝑠(1 − 𝑝)𝑠(𝑝) =
𝜋

2
. 
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Proof. 

𝑠(1 − 𝑝)𝑠(𝑝) =
𝜋2

4𝛤(1−𝑝)𝛤(𝑝) 𝑐𝑜𝑠(
𝑝𝜋

2
) 𝑠𝑖𝑛(

𝑝𝜋

2
)
  

 

                          =
𝜋2

2𝛤(1−𝑝)𝛤(𝑝) 𝑠𝑖𝑛(𝑝𝜋)
  

 
 

                          =
𝜋

2
.  

 

Theorem 9 

 If 𝑐(𝑝) =
𝜋

   2Γ (𝑝) cos  (
𝑝𝜋

2
)
 for 0 < 𝑝 < 1  then one 

obtains 

 

𝑐(1 − 𝑝)𝑐(𝑝) =
𝜋

2
. 

Proof : 
 Proof is the same as Theorem 8. So we omit it. 

 

Corollary 13 
 If 0 < 𝑝 < 1   then one obtains 

 

𝑠(𝑝)𝑐(𝑝) =
𝜋𝛤(1−𝑝)

2𝛤(𝑝)
. 

 
Corollary 14 

 If 0 < 𝑝 < 1   then one obtains 

  
𝑐(𝑝)

𝑠(𝑝)
= 𝑡𝑎𝑛 (

𝑝𝜋

2
).   

 

Corollary 15  
 If  0 < 𝑝 < 1  then one obtains      

 

𝑐′(𝑝)𝑠(𝑝) − 𝑐(𝑝)𝑠′(𝑝)

𝑠2(𝑝)
=

𝜋

2
(1 + 𝑡𝑎𝑛2 (

𝑝𝜋

2
)). 

 

 

IV. CONCLUSION 

 
 

 The improper integrals ∫
𝑠𝑖𝑛 𝑥

𝑥𝑝

∞

0
 𝑑𝑥 and ∫

𝑐𝑜𝑠 𝑥

𝑥𝑝

∞

0
 𝑑𝑥 are 

evaluated by Laplace transform method different from the 

previously published ones with 0 < 𝑝 < 1. By this 

perspective, it is much easy to evaluate integral in Corollary 

1 and Fresnel integrals without using complex and other 

traditional methods requiring more sophisticated 

knowledge.   
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