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Abstract – Pentadiagonal Toeplitz matrix has been well 

studied over the past years, and the invertibility of nonsingular 

pentadiagonal Toeplitz matrices has been quitely investigated 

in different fields of applied linear algebra. In this paper, we 

provide a necessary and sufficient condition on which 

pentadiagonal Toeplitz matrix, present an algorithm for 

calculating the determinant of a pentadiagonal Toeplitz 

matrix, and propose a fast algorithm for computing the 

inverse of a pentadiagonal Toeplitz matrix.  
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I. INTRODUCTION 
 

Pentadiagonal Toeplitz matrices have many good 

properties, and pentadiagonal Toeplitz matrices have 

become one of the most important and active research field 

of applied mathematic and computation mathematic 

increasingly in recent years. Pentadiagonal Toeplitz 

matrices have a wide range of interesting applications as an 

important class of special matrices, and have been applied 

in many areas such as numerical solution of ordinary and 

partial differential equations, interpolation problems, 

boundary value problems.  

Consider the following n n  pentadiagonal matrix in 

this paper: 
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1

1

1

 
 
 
 
 
 
 
 
 
 
 
  

b a

c b a
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d c b a

d c b

   (1.1) 

 

In [1], P.G. MARTINSSON, V. ROKHLIN AND M.  

TYGERT derived a fast algorithm for the construction of a 

data-sparse inverse of a Toeplitz matrix. Tomohiro Sogabe 

proposed a fast numerical algorithm for computing the 

determinant of a pentadiagonal matrix from the 

generalization of the DETGTRI algorithm. Based on the 

idea of a system perturbation followed by corrections, 

Nemani [3] proposed a fast algorithm to solve the Toeplitz 

penta-diagonal system .Ax f Jeffrey M.McNally, 

L.E.Garey, R.E. Shaw presented relevant background from 

these methods and then introduce an m processor scalable 

communication-less approximation algorithm for solving a 

diagonally dominant tridiagonal Toeplitz system of linear 

equations. In [5], XiaoGuang Lv, Ting-Zhu Huang, Jiang 

Le presented an algorithm with the cost of 9 3n for 

calculating the determinant of a pentadiagonal Toeplitz 

matrix and an algorithm for calculating the inverse of a 

pentadiagonal Toeplitz matrix. 

Motivated by the above, in this paper, we provide a 

necessary and sufficient condition on which pentadiagonal 

Toeplitz matrix, present an algorithm for calculating the 

determinant of a pentadiagonal Toeplitz matrix, and 

propose a fast algorithm for computing the inverse of a 

pentadiagonal Toeplitz matrix. 

In this paper, (0, ,1, 0, , 0) ,T

ie  1 at the ith 

coordinate. 
TA corresponds to the transpose matrix of .A

Without loss of generality, suppose 11n . 
 

II. PRELIMINARY NOTES 
 

In this section, we present some lemmas that are 

important to our main results. 

Lemma 2.  

1Let matrix T be an n n Toeplitz matrix. 
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then the inverse of  T  be an n n  Toeplitz matrix also, 

and 
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where 1 1a t  , 1

1

( )j j k j k

k j

a t a t 

 

    , 2j   

Lemma 2.2 [5] 

 Let
A B

M
C D

 
  
 

, A is an matrix, B is an m m matrix, C

is an m n mat n m rix, D is an m n matrix. If B is 

invertible, then M is invertible if and only if 
1C DB A is 

invertible, and 
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III. MAIN RESULT 
 

In this paper, without loss of generality, suppose that the 

pentadiagonal matrix A  is nonsingular 

Decompose the pentadiagonal Toeplitz matrix A as the 

following perturbation: 
 

0

B T
A

C

 
  
 

, 

 

whee T  is an ( 2) ( 2)n n    matrix, B  is an 

( 2) 2n   matrix, C  is an 2 ( 2)n   matrix, and 
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d
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It is easy to see T is invertible, and by Lemma 2.1, 

 

1

1

2

3 2 1

1

1

1n

a

T a

a a a





 
 
 
 
 
 
 
 

 

 

where 1 ,a a   2 1( ),a b aa    3 1 2( ),a c ba aa   

4 1 2 3( ),a d ca ba aa      

4 3 2 1( ),j j j j ja da ca ba aa         5j   

Let 
1TN B JT B . By above, it is easy to compute that 

1 2

3 1

m m
N

m m

 
  
 

 

where 

1 1n nm a aa    

2 1nm a   

2

3 1 12n n nm a a aa a     

then A  is invertible, and 
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Let 1

1 2 3( , , , , )nT u u u u  , then 
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1 1

1 2 3 4 1 2 3 4( , , , ) (( ) ( , , , ))T T Tu u u u BN B T J e e e e    

1 1

1 2 3 4 1 2 3( , , , ) (( ) ( , , , ))T T T

n n n nu u u u BN B T e e e e 

  
1

1 2 3 4 1 2 3 4( , , , ) ( ( , , , ))T Tu u u u BN B J u u u u  

1 TWN W J V   

where 

1 2 3 4 1 2 3 4

1 2 3 1 2 3 4

( , , , ) ( , , , )

0

( , )
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c b
W u u u u B u u u u

d c

d
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So 
1 1

1

1 1

TN W J N
A

T V WN

 



 

 
  

 
 

 

Thus, we have the following conclution: 

Theorem Let A be a nonsingular pentadiagonal Toeplitz 

matrix,. Partition A as 
0

B T
A

C

 
  
 

, where ,T  ,B C and

J are as above. Then 

(1) A  is invertible if and only if 2

1 2 3 0m m m  ; 

(2) 2 2

1 2 3det ( 1) ( )nA m m m   ; 

(3) 
1 1

1

1 1

TN W J N
A

T V WN

 



 

 
  

 
. 

Proof.  
Now we need to prove (2) only. 

 By the multiplication of block matrix, we have 
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Hence 
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1

2

0
det det det

0 0

nE T B T B

CT E C N





     
      

     
 

Since 

2

1

2

0
det 1

nE

CT E





 
 

 
,  det 1,T   

so 
2 2 2

1 2 3det ( 1) det ( 1) ( )n nA N m m m       

The proof is complete.      

According to the deduction above, we have the following 

algorithm: 
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Algorithm 1 
Step 1 Using Lemma 2.1, calculate 
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3 2 1

1

1

1n
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T a
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, 

 

Step 2 Calculate 1m , 2m , 3m  

Step 3 Calculate 2 2

1 2 3det ( 1) ( )nA m m m    

Algorithm 2 
Step 1 Using Lemma 2.1, calculate 
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2

3 2 1

1

1

1n

a

T a

a a a





 
 
 
 
 
 
 
 

, 

 

Step 2 Calculate
1m , 

2m , 
3m  

Step 3 Calculate W  and V  

Step 3 Calculate
1 1

1

1 1

TN W J N
A

T V WN

 



 

 
  

 
 

 

IV. NUMERICAL EXAMPLE 
 

This section gives an example to illustrate our results. All 

the following tests are performed by MATLAB 7.0. 

Example 1. 

Given 0a  , 0,b   1,c  0d   and 11n  , that is 

 

11 11

0 0 1

1 0 0 1

0 1 0 0 1

0 1 0 0 1

0 1 0 0

0 1 0

A



 
 
 
 
 
 
 
 
 
 
 
  

, 

So 

1

0 1

0 0 1

1 0 0 1

,1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 0

0 1

1 0

0 1

0 0

0 0

0 0

0 0

0 0

B

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

By Lemma 2.1, we have 

 

1

      1            0            0            0            0            0            0            0            0      

      0            1            0            0            0            0       

T  

     0            0            0      

      0            0            1            0            0            0            0            0            0      

     -1            0            0            1            0            0            0            0            0      

      0           -1            0            0            1            0            0            0            0      

      0            0           -1            0            0            1            0            0            0      

      1            0            0           -1            0            0            1            0            0      

      0            1            0            0           -1            0            0            1            0      

      0            0            1            0            0           -1            0            0            1      

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9 1,a  10 0,a   
11 0,a   

12 1a   

1 0,m   
2 0,m   

3 1m   

2

1 3 2 0m m m   

 

Example 2. 

Given 0a , 1b , 2c , 1d  and 11n , that 

is 

 

11 11

1 0 1

2 1 0 1

1 2 1 0 1

1 2 1 0 1

1 2 1 0

1 2 1

A



 
 
 
 
 
 
 
 
 
 
 
  

, 

So 
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1 0 2 0 1

1 0 2 0 1
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By Lemma 2.1, we have 

 

1

1

0 1
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1 1 0 1

1 1 1 0 1

1 1 1 1 0 1

2 1 1 1 1 0 1

2 2 1 1 1 1 0 1

2 2 2 1 1 1 1 0 1

T 

 
 
 
 
 
  
   
 

  
   
 
    
 

    

 

9 2,a  10 3,a   11 3,a    12 3a   
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where 
2

1 10 11 122 1 1m a a aa a a b c d          

2 10 9 1 5m a aa b c d         

3 10 1 5m a a b c d         

1 5
,

5 5
N

 
  

  
 

1
5 51

5 130
N 

 
   

 
 

2

1 3 2 30 0m m m     

So  

(1) A  is invertible; 

(2) 11 2

1 3 2det ( 1) ( ) 30A m m m    ; 

(3) 
1 1 1 1 1 1

1 2

1 1 1

T

T

T T BN B JT T BN
A K

N B JT N
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