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Abstract — In this work, we present both analytical and
numerical approaches to solve dynamics drug therapy and
harmonic oscillator models. The procedures are being
discussed and applied. The closed form numerical solutions
obtained using Differential Transformation Method are
compared with the analytical solutions of the models and are
found to be very accurate and compatible. The results
obtained have shown the ability of the methods for systems of
differential equations.
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I. INTRODUCTION

A system of linear ordinary differential equations of the
first order can be considered as

X, =4, X, Fa5,X, Fa.. +a,,x, + g
Xy =y X F AypXy F e, +a,,x, +g,
(H
/ —
X, =X +a,,X) F e +a,,x, +g,

Where = d /dt. Given are the functions a;; (/) and g, (7)

on some interval a <t <b. The unknowns are the functions

x,(£), x,(2),......x, (t). The system is called homogeneous if

all g (¢) = 0, otherwise it is called non-homogeneous.
Matrix notation for systems. A non-homogeneous system

of linear equations (1) is written as the equivalent vector-
matrix system.

x' (1) = A(t)x + g (1) )
Where
Xy &
X, &> a, 4y - a,
X = , g = , A=
a, . . . a,,
X, &,

We restrict our study to the system of linear ordinary
differential equations of the first order.

II. ANALYTICAL APPROACH
To demonstrate the analytical technique of solving first
order system of differential equation, we consider matrix A

of 2 x 2 constant element and X a 2 x 1 column vector of
the form

F' = Af ®3)

Suppose we have two distinct real Eigen-values of A,

aln)-( o)
dat\ f, c d)\f

Let F(t)=vl

the first derivative is
F'(t) =rve” )

Where v and r are independent of t. Substitute (5) into (4),

we obtained 7v¢ ¢ and upon cancelation of the
exponential, we obtain the eigen-value problem,

Av=rv (6)

for eigenvalues r, and corresponding eigenvectors vV, . We

rewrite the eigenvalue equation (6) as
(A-Alyv=0 (7

Where I is the nxn identity matrix. A nontrivial solution
of (7) exists provided

det(4— Ay # 0 ®

Equation (8) is a nth order polynomial equation in A,

and is called the characteristic equation of A. The
characteristic equation can be solved for the eigenvalues
and for each eigenvalue, a corresponding eigenvector can
be determined directly from (6).

We can demonstrate how this works for the 2 x 2 matrix
A of (3). We have

0=(4- Al
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(a=A)d =2A)=(cd)=0 ©
A* —(a+b)A+(ad —cb)

This characteristic equation can be more generally
written as

A —TrdA+det A=0 (10)
where 774 is the trace, or sum of the diagonal elements of
the matrix A. If A4 is an eigenvalue of A, then the
corresponding eigenvector v may be found by solving

a—A b 2
=0

c d—A\v,
where the equation of the second row will always be a
multiple of the equation of the first row. The eigenvector v

has arbitrary normalization, and we may always choose for
convenience v, =1 Using the principle of superposition,

(11)

the general analytical solution of first order linear system
ODE is

F(t) =yl + c,vt™ (12)

In a scalar form, the general analytical solution is

fi() =yl +evl™

(13)
£, =yt + e, 0

Here ¢, and ¢, are to be determined subject to initial
conditions.

III. NUMERICAL APPROACH

In this section, we consider analytic-numeric technique
called Differential Transform Method. The differential
transformation technique is one of the semi numerical
analytical methods for system of ordinary and partial
differential equations that use the form of polynomials as
approximation solutions that are sufficiently differentiable.
Its applicability for various kinds of differential equations
are given in [1]-[5].

Suppose we consider an arbitrary function f{#) which can
be expanded in Taylor series about a point t = 0 as

-1 210]

Where f (Z) the original is function and Y (k) is the

(14)

. . ak .
transformation function. Here gk means that k the derivate
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with respect to t.
The differential inverse transform of Y(k) is define

F)- Z F(k)t* (15)

Substitute equations (14) in (15), we obtained

f0- iﬂddﬁx)l b

k=0

(16)

Equation (16) is called approximate solution of the
function f'(¢).

The fundamental mathematical operations performed by
differential transform method are listed in Table 1

Table 1. One Dimensional Differential Transformation.
Functional Form Transformed Form

fit)y=wt)x v(t) | Fk)=Wk)x V(K
f(t) = nv(t) F(k) =1 V(k) ,nis a constant

f(t) = d"f(x) F(k) = %F(k+n)
dtn .

fit)y=/" _ 1

F(K) -
fity=1" A

F(k) P
f(t)y= 1t FK) = sk—1)

FK) = sk —n)> O is constant

k=
delta {0 o

F(k) =C;sin[”2" . ﬁj

fiy=t"

() =sin (cz + 3)

f(t) = cos o e
F(k)= =_ ==
(ct + ) (k) pr cos( > +,Bj
The  Operation  Properties  of  Differential
Transformation

Suppose f(#), y(¢),z(t) are three uncorrelated functions
with time ¢ and F(k), Y (k), Z(k) are the transformed
functions corresponding to f{¢), y(f), z(t) and the basic
properties are shown as follows:

i. IfFK)=DI[f), Y(k)=D][y @], Z(k)=D [z () and

C,,C,and C; are independent of 7 and k, then

D ¢ f(t) +¢c, y() + ¢, z(t] = ¢, F(k) + ¢, Y(k) +¢; Z(k)
(17)

(Symbol D denoting the differential transformation

process).
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i If 20 = f(O)y@), f(6) = D™ [F(k)], »(t) = D" [Y (k)]
and ® denote the convolution, the D[z(£)] = D[f)y(f)]
=F(k) ® Y (k)=

S Y- Fk—r) (18)

i, £(O)= £ (O fy O [ (O f,(£) then

=YY 3 3 FE b fh ok )

(19)
IV. APPLICATION

Example 1. The Dynamics of the Drug Therapy Model

The human malady of ventricular arrhythmia or irregular
heartbeat is treated clinically using the drug lidocaine. To
be effective, the drug has to be maintained at a blood stream
concentration of 1.5 milligrams per liter, but concentrations
above 6 milligrams per liter are considered lethal in some
patients. The actual dosage depends upon body weight. The
adult dosage maximum for ventricular tachycardia is
reported at 3 mg/kg 3. The drug is supplied in 0.5%, 1%
and 2% solutions, which are stored at room temperature. A
differential equation model for the dynamics of the drug
therapy is.

d
( d—’t‘ = —0.09x(t) + 0.038y(t) subject tox(0) = 0
F(t) = {d

® d—{ = 0.066x(t) — 0.038y(t)

20
subjecttoy(0) =1 (20)

Where x(¢) = Amount of lidocaine in the bloodstream,

y(t) = Amount of lidocaine in body tissue.

1. Analytical Approach
We apply equation (9) to equation (20), which leads to

-0.09-1
0.066

0.038 |
~0.038-4|

(=0.09— 2)(0.038 — 1) — (0.038)(0.066) = 0
A% +0.1281+0.000912,

2, =—-0.00757304

2, =—0.12042694

The corresponding engen vectors v are

0.038 v
~0.038+0.00757304 ) | v,
v, =1.0000000

_(~0.09+0.00757304
b 0.066
v, =0.4610143018
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Similarly, we have

0.066
v, =-0.248893076

~0.09+0.12042694 0.038 v
e, =
: ~0.038 +0.12042694 | v,

v, =1.0000000

e, and e, are Eigen-spaces for corresponding ﬂ,l and
A, respectively.
the

0.7303863895 and ¢, =0.2696136105.
Thus, the analytic solution is

Consider initial ~conditions, we obtained ¢, =

x(1)=03367185714¢ T
y(1)=0.7303863895¢ T

2. Numerical Approach

Consider the fundamental operations of differential
transformation method in Table 1, we obtained the
following recurrence relation for the system of model
equations (20).

I( X(K+1) = (k—il) [—0.09X(K) + 0.038Y(K)] X(0) = 0

1 (22)
Y(K+1) = Tl 066X (k) — 0.038Y(K)] Y(0) = 1

\

The computational result is obtained to N = 19 for
example 1

19 38
X0)=0, X(l)=m ) X(Z)=—m
X(3) = 18373 X(4) = 1729
®= 187500000 @ = " 585937500
X(5) = 16657699 X(6) = 15672169
®= 2343750000000000 ) ©=- 10986328125000000
X(19) = 44071037345894545312825607
~ 7 4658339971303939819335937500000000
19 247
Y(0) =1 Y(1) = ——— Y2)= ———
) ’ @ 500 ’ @ 125000
589 221521
YB)=————— Y4 =——
@ 7500000 @ 93750000000
YG) = 13338019 Y(6) = 200781607
~  2343750000000000 " 17578125000
70576156934783545121713883
Y(19) =

7 93166799426078796386718750

Therefore, the closed form of the numerical solution can
be written.
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®) 0+ 19 t
X0=07500

38

“15625"
18373

* 187500000 *
1729

" 585937500
16657699

+23437500000t
15672169

" 109863281250000
15098812213

+615234375000000t
15098812213

_6152343750000000t
12876084830719

+2162933349609300t
12405020366418853

" 190338134765625000
166729764729541

+2549171447753906250
11244103374927624259 .

" 71855796813964843750
10578851613656755669

+202977776527404785156t

10191830160013643222293 .

" 24357333183288574218750
2634295499460222019

+836446881294250488281250
9238033353747275481069139 .

" 41407466411590576171875000
511262924912898153915707

+34—2524—99788999557495117187500t

2

5

6

10

11

12

14

16

18

44071037345894545312825607

" 4658339971303939819335937500000000

19
y(t) ~1 — %t
247 5

125000
589 5

7500000
221521 4

937500000
13338019 g

_-23437500000
200781607 6

1757812500000
2417951153 5

"~ 123046875000
181991540641 g

615234375000
10958342522419 ¢

27685546875000
164959962542167 _ 1o

346069335937500
19865624157849361 _ 11

3806762695312500
149522275397829361 _ 1o

2855072021484375000
9003255336962593219 13

1855796813964843750000
10425331976440401379 14

24981880187882812500000
1632138130038309226769 15

4871466366577148437500000
122845879408522400719681 16

487146663657714843750000000
7396976915084515516430419 t17

4140746641159057617875000000
8565339655005113186297299 18

71666768789291381835937500000
70576156934783545121713883 19

931667994260787963867187500000

23)

)
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Example 2. Damped Harmonic Oscillator Model
When the mass slides over the table there will be a

frictional force applied to the mass in the opposite direction

of motion. Assuming it is proportional to the velocity of the

mass, we  obtain the following  equation.

d_zx + ax L+ @°x =0 Wwhich governs the motion of

de*  dt

the mass.

Here 4 = /ﬁ , k is the constant of spring, m is the
m

dx
mass. The term — 4 models the friction with the table
t

where £ is the damping coefficient. One can convert this

linear second order differential equation into a system of

two first order differential equations by letting , = ax

)

dt
is the velocity, thus we have

F(t)
d
{_x =v(t) subject to x(0) =0
dt
= (25)
% = —uv(t) + w? x(t) subject to v(0) =1

Where ££=0.5 and @ = \/E =0.8101405285
m

3. Analytical Approach

0—1 1|
0.8101405285 —0.5—A|

(—A)(-0.5—-1)—(0.8101405285)(1.0) =0
A* +0.54-0.8101405285=0

A =0.6841523048

A, =—-1.184152305

The corresponding engen vectors v are
—0.6841523048 1 Vv
e, =
1 0.8101405285 —1.184152305 )\ v,
v, =1.461662840 v, =1.0000000
Similarly, we have
1.184152305 1 2
e, =
> 10.8101405285 0.68415230 )( v,
v, =—0.8444859576 v, =1.0000000

e, and e, are Eigen-spaces for corresponding 4, and A,

respectively.
Thurs, the analytic solution of example 2 is
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o(1) = 1461662840, "M — 0 gaaagsosze ¢ e IR

x(2) = C] e0.6841523048 t + C2 6_1'184152305 t

Consider the initial value conditions to determine c¢; =

0.3661888421 and ¢, = 0.6338111579.

Thus, the analytic solution is

(1) = 0.5352446229 L BHBM _ 53504462066 1SR
(26)

4. Numerical Approach

Consider the fundamental operations of differential
transformation method in Table 1, we obtained the
following recurrence relation to the system of model

equations (25),

( X(k+1 _ V@9 X(0) =0
i (k+1) k+ 1D (0)
—(0.5)V(K) + (0.8101405285) X(k) @7)
Vk+1) = V) =1
k+1) *k+ 1) (0)
We obtained the following:
X(0)=0
X1 =1
X@2) ==
T4
X(3) = 212081057
~ 1200000000
X(4) = 623427019
1600000000
X(5) = 5305732289173037249
~48000000000000000000
X(6) = 11366494225019111747
"~ 5760000000000000000000
X(19) = 6801096130962026498338157116315213426366
~ 62282291409321984000000000000000000000000

vi)=1

va) =

T2
2120281057

V) = 1500000000
623427019
V3) = —

4000000000
5305732289173037249

v )::9600000000000000000
11366494225019111747

Vi) =- 9600000000000000000
14280024634169874323210092193

Ve = 576000000000000000000000000000

V(19) = 256878977216678011069677314638424755
" 19866759620198400000000000000000000000

Therefore, the closed form of the numerical solution can
be written as

International Journal of Applied Science and Mathematics

Volume 5, Issue 4, ISSN (Online): 2394-2894

1
~t——t

x(t) 2

212081057

+1200000000
623427019

~ 1600000000
53057322891730

+4800000000000000t
11366494225019111

" 576000000000000000
1428002463416987432323

+4032000000000000000000
38924928466033614940286

76800000000000000000000
394861233639729205608881

+58060800000000000000000000
184928711448784322599579156

232243200000000000000000000
1102107955632065200956677419590t

127733760000000000000000000000
14446057755063813993833627412

~1703116800000000000000000000000
237374603171951951920488002243

+306561024—0000000000000000000000
72990711124297868216124602916155 |,

"~ 11158821273600000000000000000000
78631927312146990427867911882205

15216574464000000000000000000000
121881301556559939146859337472 ¢16

" 31882364496000000000000000000000
2425266978367103129328800162500

+91055981592576000000000000000000
5742963975492361011865246111751 (18

" 32780153373327360000000000000000
6801096130962026498338157116315213

(28)

+622822914093219840000000000000000000

1
~1 ——
v(t) 4t

212081057

+1200000000
623427019

~2000000000"
5305732289173037249 ,

9600000000000000000
11366494225019111747

B 9600000000000000000t
14280024634169874323210092 t

576000000000000000000000000
389249284660336149402861

_96000000000000000000000000t
39486123363972920560888192191

+ 6451200000000000000000000000
184928711448784322560888192

_23224320000000000000000000000t
+1102107955632009566774195394982 10 29)
116121600000000000000000000000
14446057755063813993833627412 o

" 141926400000000000000000000000
30858698412353749663440291677 12

+306561024000000000000000000000000
72990711124297868216155594444

"~ 797058662400000000000000000000000
78631927312146990427869118822050 (14

2

+10144-38297600000000000000000000000

121881301556599391468593374727384 15

" 19926466560000000000000000000000000

2425266978367103129321800162500705 (16

+5356234-2113228000000000000000000000

57429639754923610118652461117515978

"~ 182111963185152000000000000000000000

680109613096202649833381571163152137 (18

+3278015337332760000000000000000000000

2568789772166780110696773146384247

"~ 198667596201984000000000000000000000
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Table 2. Numerical and Analytical results Dynamics of the

drug therapy model

t x(t ) Amount of lidocaine in the bloodstream

Sec. Analytical Numerical
solu)t,ion solution E= |xA N |
0.00 | 0.0000000000 | 0.0000000000 | 0.000000
4.00 | 0.1186712203 | 0.1186712204 | 1.10E-10
8.00 | 0.1884367893 | 0.1884367894 | 1.10E-10
12.0 | 0.2280976437 | 0.2280976436 | 1.10E-10
16.0 | 0.2492644878 | 0.2492644878 | 0.000000
20.0 | 0.2591065152 | 0.2591065151 | 1.10E-10
24.0 | 0.2620493671 | 0.2620493673 | 2.10E-10
28.0 | 0.2608240052 | 0.2608240085 | 3.310E-09
32.0 | 0.2571146270 | 0.2571146883 | 6.1310E-08
36.0 | 0.2490490992 | 0.2490509408 | 8.141610E-06
40.0 | 0.2459951859 | 0.2460002737 | 5.087810E-06
Table 3. Numerical and Analytical results Dynamics of the
drug therapy model.

t y(t ) Amount of lidocaine in body tissue

Sec. Analytical Numerical E = Y, — Yy
solution solution

0.00 | 1.0000000000 | 1.0000000000 | 0.000000
4.00 | 0.8751408670 | 0.8751408670 | 0.000000
8.00 | 0.7903312387 | 0.7903312387 | 0.000000
12.0 | 0.7304904698 | 0.7304904698 | 0.000000
16.0 | 0.6862959921 | 0.6862959920 | 1.10E-10
20.0 | 0.6519823638 | 0.6519823640 |2.10E-10
24.0 | 0.6239816770 | 0.6239816766 |4.10E-10
28.0 | 0.6000836921 | 0.6000836894 |2.710E-09
32.0 | 0.5789170257 | 0.5789169767 |4.910E-08
36.0 | 0.5505135916 | 0.5505121192 | 1.472410E-06
40.0 | 0.5416859579 | 0.5416818853 |4.072610E-06

Table 4. Numerical and Analytical results Damped
harmonic oscillator model.

t x(¢) Amount of Deformation (distance)

Sec. Analytical Numerical
soluzion solution E= |XA Xy |

0.00 | 0.0000000000 ]0.0000000000( 0.000000
0.60 | 0.5438918877 (0.5438918872| 5.10E-10
1.20 1.087218706 |1.087218703 | 3.10E-09
1.80 1.770382839 |1.770382838 | 1.10E-09
240 | 2.733494934 |2.733494934 | 0.000000
3.00 | 4.152618071 |4.152618090 | 1.910E-09
3.60 | 6.275898981 |6.275899703 | 7.2210E-07
420 | 9.468942567 |9.468957786 | 1.521910E-05
4.80 14.27874719 |14.27896120 | 2.140110E-04
5.40 | 21.52789447 |21.53009173 | 2.1972610E-03
6.00 | 32.45546672 |32.47307500 | 1.76082810E-02

Table 5. Numerical and Analytical results Damped

t v(t) velocity covered
Sec. Analytical Numerical E = _
solution solution ‘yA YN ‘
3.60 | 4.3077514790 | 4.3077506290 | 8.5010E-07
420 | 6.485118188 6.485100157 | 1.80310--05
4.80 | 9.772237963 9.771984495 | 2.5346810E-04
5.40 | 14.73002946 14.72742743 | 2.6020310E-03
6.00 | 22.20530342 22.18445153 | 2.08518910E-2
1
™
08
\.\k
-l
06 --..._,_____-h-‘
x(t) blood stream ]
y(t) blood tissue
04
02 T
0
0 10 20 30 40
time (sec)
Analytical solution x(t) — - Numerical solution x(t)

Analytical solution y{t) = = Numerical solution y(t)

Fig. 1. Analytical vs Numerical solutions irregular
heartbeats and lidocaine in the blood.

%(t) Distance
v(t) Velocity

30

20

10

I

p—_——

PEs

0
0 1

2 3

[

4 3 ]

Analytical solution x(t) — - Numerical solution x(t)
Analytical solution v(t) — - Numerical solution v(t)

Fig. 2. Analytical vs Numerical solutions Damped
harmonic oscillator model.

harmonic oscillator model

t v(t) velocity covered
Sec. Analytical Numerical _
solu{ion solution E= ‘y A" VN ‘

0.00 | 1.0000000000 | 1.0000000000 | 0.000000

0.60 | 0.8635075598 | 0.8635075598 | 3.10E-10

1.20 | 0.9852997685 | 0.9852997676 |9.10E-10

1.80 | 1.3298737390 | 1.3298737370 |2.10E-09

2.40 | 1.9284378010 | 1.9284377970 | 4.10E-09

3.00 | 2.8696773760 | 2.8696773520 |2.410E-08

45

V. CONCLUSION

In this paper, we presented a reliable two approaches to
solve the well-known dynamics of the drug therapy and
damped harmonic oscillator models. The DTM was used in
a direct way without using perturbation or restrictive
assumptions. The numerical technique provides a closed-
form approximation solution while the analytical approach
proves a general form.

We conclude that both techniques are promising tool for
solving linear systems of ordinary differential equations.
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