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Abstract – In this paper, the uniqueness of a nonzero common value shared by the nonlinear differential polynomial 

IM of a meromorphic function is studied on the basis of the Nevanlinna value distribution theory. The results of this 

paper have improved the results of R S. Dyavanal, C.C. Yang and X.H. Hua, and Liu Lipei.     
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I. INTRODUCTION 

The meromorphic functions mentioned in this paper refers to the meromorphic functions defined on the whole 

complex plane. In this article we will use some of the standard notation and basic results in the Nevanlinna value 

distribution theory [1, 2], such as    ,fr,,fr,T m    ,fr,N,fr,N  etc. Let )(zf  be a meromorphic function on the 

whole complex plane, we denote by  frS , any function satisfying     fr,Tofr,S   as r , r E , where 

(0, )E    is a set with finite measure, not necessarily the same every time. Let a be a finite complex number 

and k a positive integer. By Ek) (a, f), we denote the set of zeros of f −a with multiplicities at most k, where each 

zero is counted according to its multiplicity. Also let �̅�𝑘)(a, f) be the set of zeros of f−a whose multiplicities are 

not greater than k and each zero is counted only once. And by N(k (r; 
1

𝑓−𝑎
)  (or 𝑁𝑘)(𝑟,

1

𝑓−𝑎
) , we denote the counting 

function with respect to the set Ek)(a, f) (or �̅�𝑘)(a, f)).  
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and the deficit[3] of f(z) with respect to a is  
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   . 

In the 1997, Chung-Chun Yang and Xinhou Hua [4] proved the following result. 

Theorem A.  

Let f and g be two nonconstant meromorphic functions,  11n   an integer and a∈C−{0}. If f nf ′ and gng′ share 

the value a CM, then either f = dg for some (n + 1) the root of unity d or g(z) = c1ecz and f(z) = c2e−cz , where c, c1 , 
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and c2 are constants and satisfy (c1c2)n+1c2 = -a2 . 

In 2008, Peili Liu[5] obtained the following theorem. 

Theorem B. 

Let f(z) and g(z) be two transcendental entire functions. Let n, 𝑘(≥  2) be two integers satisfying   𝑛 > 5𝑘 + 7. 

If [𝑓𝑛(𝑧)](𝑘) and  [g𝑛(𝑧)](𝑘) share the value 1 IM, then either f = tg, for some n-th root of unity t, or g(z) = c1ecz 

and  f(z) = c2e-cz, where c, c1, c2 are constants satisfying   (−1)𝑘(𝑐1𝑐2)𝑛𝑐2𝑘 = 1 . 

In 2011, R. S. Dyavanal[6] gave the next results. 

Theorem C. 

Let f(z) and g(z) be two non-constant meromorphic functions, whose zeros and poles are of multiplicities at 

least  s, where s is a positive integer. Let 𝑛 ≥  2 be an integer satisfying   (𝑛 + 1)𝑠 ≥ 12. If 𝑓𝑛𝑓′ and  gng′  share 

the value 1 CM, then either f = dg, for some (n+1)-th root of unity d, or g(z) = c1ecz and  f(z) = c2e-cz, where c, c1, 

c2 are constants satisfying  (c1c2)n+1c2 = −1. 

The research on the uniqueness of value sharing of meromorphic functions has made great progress and 

achieved remarkable results. [7, 8] In this paper we mainly study the uniqueness of the IM-shared value of the 

meromorphic function. First of all, give the following two important functions: 

1

1 1 0[ ] n n

n nL f a f a f a f a

     ,                     (1) 

 1

1 1 0[ ] n n

n nL g a g a g a g a

     ,                              (2) 

where an, an-1,…, a1 , a0 are all constants and 𝑎𝑛 ≠ 0. 

  We obtain two main results as follow. 

Theorem 1.  

Let f(z) and g(z) be two transcendental meromorphic functions, whose zeros and poles are of multiplicities at 

least  s, where s is a positive integer. Let 𝑛 ≥  6 be an integer satisfying   (𝑛 + 1)𝑠 ≥ 23. If 𝑓𝑛𝑓′ and  gng′  share 

the value 1 IM, then either f =dg, for some (n+1)-th root of unity d, or g(z) = c1ecz and  f(z) = c2e-cz, where c, c1, c2 

are constants satisfying  (c1c2)n+1c2 =−1. 

Theorem 2. 

 Let f(z) and g(z) be two transcendental entire functions. Let n, 𝑘, 𝑙 be three integers satisfying   7𝑙 > 6𝑛 +

5𝑘 + 7. If [𝐿(𝑓)](𝑘) and  [𝐿(g)](𝑘) share the value 1 IM, then either f(z) = b1ebz+c and  g(z) = b2e-bz, where b, b1, 

b2 are constants satisfying 
2

1 2( 1) ( ) 1k n kb b b   , or f and g satisfying the algebraic equation R(f, g)≡0 (where 

R(w1,w2)=L(w1)-L(w2)) . 

Remark. Put l n   in above theorem, then we get Theorem B. 

II. SOME LEMMAS 

In this section we present some lemmas which will be needed in the sequel. 
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Lemma 1
[9]

. 

Let f(z) be a nonconstant meromorphic function and let a1(z) and a2(z) be two meromorphic functions such that 

T(r,ai) = S(r,f), i = 1, 2 . Then 

     
1 2

1 1
, , , , ,T r f N r f N r N r S r f

f a f a

   
      

    
. 

Lemma 2
[2,10]

. 

Let f be a non-constant meromorphic function, let k be a positive integer, and let c be a non-zero finite complex 

number. Then 
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where
 0 1

1
,

k
N r

f


 
  
 

is the counting function which only counts those points such that f(k+1) = 0 but f(f k−c) ≠ 0. 

Lemma 3
[10]

.  

Let f and g be two transcendental entire functions, and let k be a positive integer. If f (k) and g(k) share the value 

1 IM and 

1 1[ (0, ) (0, ) 2 (0, ) 3 (0, )] 6k kf g f g          

then either
( ) ( ) 1k kf g  or f g . 

Lemma 4
[11]

.  

Let f and g be two transcendental meromorphic functions, and k be a positive integer.  If  f (k) and g(k) share 1 

IM, and 

Δ1 = (2𝑘 + 3)Θ(∞, 𝑓) + (2𝑘 + 4)Θ(∞, g) + Θ(0, 𝑓) + Θ(0, g) + 2𝛿𝑘+1(0, 𝑓) + 3𝛿𝑘+1(0, g) > 4𝑘 + 13, 

Δ2 = (2𝑘 + 3)Θ(∞, g) + (2𝑘 + 4)Θ(∞, 𝑓) + Θ(0, g) + Θ(0, 𝑓) + 2𝛿𝑘+1(0, g) + 3𝛿𝑘+1(0, 𝑓) > 4𝑘 + 13, 

then either 
( ) ( ) 1k kf g  or f g . 

Lemma 5
[4]

.    

Let f and g be two nonconstant meromorphic functions, 6n  . If 1n nf f g g   , then 1( ) czg z c e , 𝑓(𝑧) =

 𝑐2𝑒−𝑐𝑧, where c, c1 and c2 are constants and 
1 2

1 2  ( ) 1nc c c   . 

Lemma 6
[1]

. 

Let an(≠ 0), an-1, … , a0 be constants and let  f(z)  be a  nonconstant  meromorphic function. Then 
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   frnTafafarT n

n

n

n ,, 0

1

1  

  . 

Lemma 7
[2]

.  

Let f(z) be a nonconstant entire function and let k (≥ 2) be a positive integer. If
( ) 0kff  , then  𝑓(𝑧) =

 𝑒𝑎𝑧+𝑏 where a and b are constants. 

III. PROOFS OF THEOREMS 

In this section we give the proofs of the main results. 

Proof of Theorem 1.  

Let  𝐹 =
𝑓𝑛+1

𝑛+1
, and 𝐺 =

g𝑛+1

𝑛+1
,  then 𝐹′ = 𝑓𝑛𝑓′ and   𝐺′ =gng′. Since 

1

1 1 1
( , ) ( , ) [ ( , ) (1)]

( 1)n
N r N r T r F

F s nf



  


, 

we have  

1
( , )

1
(0. ) 1 lim 1

( , ) ( 1)r

N r
FF

T r F s n
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 . 

And since 

1

1

1
( , )

(0, ) 1 lim
( , )

k
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N r
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( 1) ( , )

1
1 lim 1
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k N r
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Similarly, we have 
)(

),(
1

1
101






ns

k
Gk . Hence,  

1 2 (2 3) ( , ) (2 4) ( , ) (0, )k F k G F            1 1(0, ) 2 (0, ) 3 (0, )k kG F G      

                

1 1
(4k 9)(1 ) 5(1 )

( 1) ( 1)

k

s n s n


    

   

                              

9k 14
4 14-

s(n 1)
k


 

 . 

  Let 1k . If ( 1) 23n s  ，we have 1 2 4 13k      . Since 𝑓𝑛𝑓′ and g
𝑛

g
′ share the value 1 IM, there 

must be  𝐹′𝐺′ ≡ 1 or  𝐹 ≡ 𝐺 by Lemma 4. 

    (i)  Consider the case: 𝐹′𝐺′ ≡ 1，that is 𝑓𝑛𝑓′
g

𝑛
g

′ ≡ 1. 
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Suppose that z0 be a pole of f. Since 𝑛 ≥ 6, there must be czeczf 2)( , czeczg  1)( , from Lemma 5, where 

1c , 2c , c  are all constants,and 121
21  ccc n)( . 

(ii) Consider the case: GF  . 

    Since 
11

11








n

g

n

f nn

，that is 11   nn gf ，we have 1， 1  nddgf . 

    So we complete the proof of theorem1. 

Proof of Theorem 2. 

According to the two functions (1) and (2) defined in Introduction, it can be set 

𝐿(𝑓) = (𝑓 − 𝑐1)𝑙1(𝑓 − 𝑐2)𝑙2 … (𝑓 − 𝑐𝑠)𝑙𝑠, 

𝐿(g) = (g − 𝑐1)𝑙1(g − 𝑐2)𝑙2 … (g − 𝑐𝑠)𝑙𝑠 . 

(Where jc  are finite complex numbers, j = 1,2,… ,s. 𝑙1, 𝑙2, … , 𝑙𝑠 ,  s, n are integers) 𝑐1, 𝑐2, … , 𝑐𝑠  are all different 

zeros of )(zL , 𝑙1 + 𝑙2 +  … + 𝑙𝑠 = 𝑛. And let 𝑙 = max{𝑙1, 𝑙2, … , 𝑙𝑠}. 

Without loss of generality, suppose that 1na , 
1 1,l l c c  then we have 

1
( , )

( )
(0, ( )) 1 lim

( , ( ))r

N r
L f

L f
T r L f
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1
( , )
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Similarly, 
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 .                                                        (5) 

Similarly,  

1

1
(0, ( ))k

l k
L g

n
 

 
                       (6) 

Since ,  Combined with formula (3)-(6), we get 

1 1[2 (0, ) 2 (0, ) 5 (0, ) 5 (0, )]k kf g f g          

1 1[2 (0, ( )) 2 (0, ( )) 5 (0, ( )) 5 (0, ( ))]k kL f L g L f L g         

                                                    1 1 1 1
2 2 5( ) 5( )

l l l k l k

n n n n

     
     7 5 7

6
l k

n
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By Lemma 3, We have  [𝐿(𝑓)(𝑘)] [𝐿( g )(𝑘)]  = 1 or )()( gLfL  . Then we consider the next two cases.     

Case 1.  If 1])(][)([ )()( kk gLfL , that is  

)()( ])()()[(])()()[( kl
s

llkl
s

ll ss cgcgcgcfcfcf   22
22    =1.                                           (7) 

(i) If 1s , the above formula (7) becomes to 1 )()( ])[(])[( knkn cgcf . Since 7567  knl ， nl  , we 

have 75  kn ， 0 cf , 0 cg . And from Lemma 2.7 we have cebf bz  
1 ， cebg bz  

2 , 

where 1b , 2b , b  are constants with 11 2
21  knk bbb )()( . 

(ii) If 2s . Since 7567  knl ， nl  ，it must be 75  kl . Suppose that 0z  be the l -th order zero of 

cf  ，then 0z  must be )( kl  -th order zero of )(])()()[( kl
s

ll scfcfcf  22
. And since g  is a 

transcendental entire function, it leads to contradictions. Therefore 0 cf , 0 cg . From Lemma 7, we 

obtain cef z  )( , where )(z  is a nonconstant entire function. Hence, 

  ik
i

kizki epcef ),,,(])[(][ )()()()(   ( ni ,,, 21 ,  ),,,( nipi 21  

is a differential polynomial.) Obviously, if 0ip , ),(),( frSprT i  , ni ,,, 21 . We have

( 1)

1

1
( , ) ( , )

n

n

N r S r f
p e p


 

. By Lemma1, Lemma 6, and cef z  )( , we obtain that 

),(),(),()( )( frSpeprTcfrTn n
n  

1
11 

 

                         ),(),(
)()(  epep

rN
pep

rN
n

n
n

n 2
1

1
1

11







 
 

( 2)

2

1
( , ) ( , )

n

n

N r S r f
p e p

 
 

 

( 2) ( , ) ( , )n T r f c S r f    . 

It leads to contradictions. Therefore 1

bzf b e c  , and similarly, 2

bzg b e c  . 

Case 2.  If )()( gLfL  , 0 )()(),( gLfLgfR , that is 0),( gfR .                             

In summary, theorem 2 is proved. 

IV. CONCLUSION 

In fact, there are many results about the problem of sharing values of integral functions, and shared value 

problem has a wide range of applications. We study the uniqueness of a nonzero common value shared by the 

nonlinear differential polynomial IM of a meromorphic function in this paper, and the results of this paper have 

improved the results of R S. Dyavanal, C.C. Yang and X.H. Hua, and Liu Lipei.. Analogously, we speculate that 

we can get corresponding results on meromorphic function s by using similar methods. 
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