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I. INTRODUCTION

Most of the challenging problems we encounter in engineering, economics, environmental science, medical and
social sciences have various uncertainties and imprecision embedded in them. The solutions of such problems

involve the use of mathematical principles based on uncertainties and imprecision.

In order to find solution to these problems different theories were postulated and employed, such as theory of
probability [1], theory of fuzzy set [2], theory of interval mathematics [3], theory of rough set [4] and vague sets
[5] which were considered as mathematical tools for dealing with uncertainties. However all these theories have
their short comings in dealing with the uncertainties. The major setback associated with these theories is the
inadequacies of the parameterization tools. To deal with these short comings, Molodtsov [6] introduced the
concept of soft set theory as a new general mathematical tool for dealing with uncertainties and imprecision that
is free from the limitations that have troubled the classical mathematical principles. Molodtsov pointed out the
application of soft set in different directions, such as operation research, game theory, perron integration among

others.

Soft set theory has proven useful in many different areas of human endeavors such as decision making [7], data

analysis [8], forecasting and so on.

Research on soft sets has been making progress, since its introduction by Molodtsov in 1999 up till date and
several results have been achieved both in theory and practice. Maji et al. [9] defined several algebraic operations
in soft set theory and published a detailed theoretical study on soft sets. Ali et al. [10] further presented and
investigated some new algebraic operations for soft sets. Sezgin and Atagun [11] proved that certain De Morgan’s
law holds in soft set theory with respect to various operations on soft sets and discuss the basic properties of
operations on soft sets such as intersection, extended intersection, restricted union and restricted difference. Maji

et al. [12], extended standard soft set to fuzzy soft set.

Alkhazaleh et al. [13] introduced soft multiset and define the basic terms including union and intersection

operations on soft multiset with examples. In this paper, we extend their work by defining some operations such
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as restricted union, restricted intersection, extended intersection, AND-product, OR-product, restricted difference
and restricted symmetric difference with relevant examples and illustrations. Basic properties of the operations

were presented. We state and proved several De Morgan’s inclusions and laws with examples and illustrations.
I1. PRELIMINARY CONCEPTS

2.1 Soft Set

We first recall some basic notions in soft set theory. Let U be an initial universe set, E be a set of parameters

or attributes with respect to U, P(U) be the power set of U and A C E.
2.1.1 [6] Definition

A pair (F,A) is called a soft set over U, where F is a mapping given by F: A — P(U). In other words, a soft
set over U is a parameterized family of subsets of the universe U. For x € A, F(x) may be considered as the set

of x-elements or as the set of x-approximate elements of the soft set (F, A4).

The soft set (F, A) can be represented as a set of ordered pairs as follows: (F,A) = {( x, F(x)), x €A, F(x) €
P(U)}

2.1.2 [9] Definition

Let (F, A) and (G, B) be two soft sets over U. Then
(i) (F, A) is said to be a soft subset of (G, B), denoted by (F,A) € (G,B), if A € B and F(x) S G(x),Vx € A
(ii) (F, A) and (G, B) are said to be soft equal, denoted by (F,A) = (G, B), if (F,A) € (G,B) and (G,B) € (F, 4)
2.1.3. [14] Definition

Let (I', A) be a soft set over U. Then, the support of (I, A) written supp (", A) is the set defined as supp(I", A) =
{x € A: I'(x) + 0}.

(i) (I, A) is called a non-null soft set if supp (I", A) # @.
(i) (I', A) is called a relative null soft set denoted by @, if I'(x) = @,Vx € A.
(iii) (I, A) is called a relative whole soft set, denoted by U, if I'(x) = U,Vx € A.
2.1.4. [14] Definition
Let (F, A) be a soft set over U. If F(x) # @ for all x € A, then (F, A) is called a non-empty soft set.
2.1.5 [10] Definition

Let (F, A) and (G, B) be two soft sets over U. Then the union of (F, A) and (G, B), denoted by (F,A) U (G, B)
is a soft set defined as (F,A4) U (G,B) = (H,C),where C =AU B and Vx € C,
F(x), ifxeA—-B
H(x) =4 G(x), ifxeB—A
F(x)U G(x), if x€eANB

2.1. 6 [10] Definition
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Let (F, A) and (G, B) be two soft sets over U. Then the restricted union of (F, A) and (G, B), denoted by (", A)
Ug (G, B) is a soft set defined as; (F,A) Ug (G,B)=(H,C),where C=ANB #@PandVxeC

H(x) = F(x) U G(x).
2.1.7 [10] Definition

Let (F, A) and (G, B) be two soft sets over U. Then the extended intersection of (F, 4) and (G, B), denoted by
(F,A) 0g (G,B), is a soft set defined as (F,A) Ng (G,B) =(H, C) where C=4U BandV x € C,
F(x), ifxeA—B
H(x) =< G(x), ifxeB—A
F(x)n G(x), if xeANB
2.1.8 [10] Definition

Let (F, A) and (G, B) be two soft sets over U. Then the restricted intersection of (F,A) and (G, B) denoted
by (F,A) m (G, B), is a soft set defined as (F,A) M (G,B) = (H,C) where C=4N B and V x € C, H(x) = F(x)
NG (x).

2.1.9 [9] Definition

Let (F,A) and (G, B) be two soft sets over U. Then the AND-product or AND-intersection of (F,A) and
(G, B) denoted by (F, A)A (G, B) is a soft set defined as

(F,AA (G,B) = (H,C),where C =AXBandV (x,y) €EAXB
H(x,y) = F(x) N G(y).
2.1.10 [9] Definition

Let (F, A) and (G, B) be two soft sets over U. Then the OR-product or OR-union of (F, A) and (G, B), denoted
by (F,A)V (G, B) is a soft set defined as

(F,A)V (G,B) = (H,C),where C =AXBandV (x,y) EAXB
H(x, y) = F(x) U G(»).
II1. SOFT MULTISET

Let {U;: i € I} be a collection of universes such that N;¢; U; = @ and let {Ey,;: i € I} be a collection of sets of

parameters. Let U = W;e; P(U;), where P(U;) denotes the power sets of U;'s, E = Wi Ey, and A € E.
3.1 [13] Definition
A pair (F, A) is called a soft multiset over U, where F is a mapping given by F: 4 — U.

In other words, a soft multiset over U is a parameterized family of subsets of U. For € € 4, F(¢) may be
considered as the set of € —approximate elements of the soft multiset (F, A). Based on the definition, any change

in the order of the universes will produce a different soft multiset.

3.1 [13] Example
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Suppose that there are three universes U, U, and U;. Let us consider a soft multiset (F, A) which describes the
“attractiveness of houses”, “cars” and “hotels” that Mr. X is considering for accommodation purchase,

transportation purchase, and venue to hold a wedding celebration respectively.
Let U1 = {hl’ hz, h3, h4, hs, hﬁ}' U2 = {Cl' Cp,C3,Cy, Cs} and U3 = {171, Uy, U3, 174}.
LetEy = {Eul, Ey,, EU3} be a collection of sets of decision parameters related to the above universes, where

_ ey 1 = expensive, ey ,2 = cheap,eul, 3 = beautiful,
U = ey, 4= wooden, ey, 5 = in green surroundings ’

ey, 1 = expensive, ey, 2 = cheap, ey, 3 = Model 2000 and above,
Uz — {euz, 4 = Black, ey, 5 = Made in Japan, ey, 6 = Made in Malaysia }

_ eus 1= expensive,eug, 2= cheap,eUS, 3 = majestic,
Us ey, 4 = in Kuala Lumpur, ey,,5 = in Kajang

Let U = Wi_,P(U), E = W}_,Ey, and A € E, such that
A={a, = (eul, ley,,1, ey, 1), a, = (eUl, 1ey,, 2 ey, 1), as = (e,,l, 2,ey,,3, ey, 1), a, = (eul, 5,ey,, 4 ey, 2),
as = (eul, 4,ey,,3, ey, 3), ag = (eUl, 2,ey,,3, ey, 2), a; = (eUl, 3,ey,, 1 ey, 1), ag = (eul, 1,ey,,3, ey, 2)}.
Suppose that
F(a;) = ({hy, ha, he}, {c2}, {vz, v3}),
F(az) = ({hy, ha, he}, {c1, 3, 4 c53, {v2]),
F(az) = ({hy, ha, hs} {cy, c5}, 0),
F(ag) = ({hy, ha, he}, @, {v1, v4}),
F(as) = ({hy, ha}, {c1, ¢33, {1 }),
F(ae) = ({hy, ha, hs} {cy, c5}, Us),
F(az) = ({hy, ha}, @, {v3}),
F(ag) = ({ha, h3, he}, {c1, c3}, {v1, va}).
Then we can view the soft multiset (F, A) as consisting of the following collection of approximations:
(F,A) = {(ap ({ha, h3, he}, {c2}, (v, v3})),(a2, ({ha, h3, he}, {ch, €3, ar c5}, {21)),
(az, ({h1, hy, hs} {c1, 33, ), (a4, ({ha, ha hed, @, {v1,143),
(as, (thy, hal, {c1, 33, {v1 ), (a6, ({ha, Ry, hs} {c1, €33, Us)),
(a7, ({hy, he}, @, {v3 D), (ag, ({ha, hs, e} {1, ¢33, {v1, va))}.
Each approximation has two parts: a predicate and an approximate value set.
We can logically explain the previous example as follows:

For F(a,) = ({hy, hs, hg}, {c3}, {v,, v3}), if {hy, hs, he} is the set of expensive houses to Mr. X then the set of
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relatively expensive cars to him is {c,} and if {h,, hs, h¢} is the set of expensive houses to Mr. X and {c,} is the
set of relatively expensive cars to him then the set of relatively expensive hotels to him is {v,, v3}. It is obvious

that, the relation in soft multiset is a conditional relation.
3.2. [13] Definition

For any soft multiset (F, A), a pair (eui,j, FeUi,j) is called a U; —soft multiset part V ey, j € agand Fey,,j S

F(A) is an approximate value set, where a;, € A,k = {1,2,3,...,n},i € {1,2,3,..,m}andj € {1,2,3,...,7}.
3.2. [13] Example
Consider Example 3.1. Then
(eul']" Feul'j) = {(eul' 1,{hy, hs, ha})' (eul' 1,{hy, hs, hé})' (eul' 2,{hy, hy, hs})a (eul' 5,{hy, hy, ha})'
(evy 4 thy, ha}), (v, 2, {hy, ha, hs}). (euy, 3, o, had), (ew, 1, {ha, g, B ),
is a U; — soft multiset part of (F, A).
3.3. [13] Definition
Soft multisubset.
For any two soft multisets (F, A) and (G, B) over U, (F, A) is called a soft multisubset of (G, B) if

(i) A € Band

(i)Y ey, € a (ev,js Fey,) € (evjs Gey, )

Where a;, € A,k ={1,2,3,...,n},i € {1,2,3,..., m}and j € {1,2,3,...,7}.
This relationship is denoted by (F,A) € (G, B). In this case (G, B) is called a soft multisuperset of (F, A).
3.4. [13] Definition

Equal soft multisets.

Two soft multisets (F, A) and (G, B) over U are said to be equal if (F, A) is a soft multisubset of (G, B) and
(G, B) is a soft multisubset of (F,A).

3.3. [13] Example

Consider Example 3.1. Let
A={a, = (eul,l, ey, 1, eU3,1),a2 = (eUl,Z,eU2,3, ey, 1),
as = (ey,, 4, ey, 3, €y,,3),as = (ey,,3,ey,,1,€y,, 1) and
B ={b, = (ey,, 1, ey, 1,ey,,1),b, = (ey,, 1, €y,,2,€y,,1),
b; = (eul,Z, ey, 3, ey, 1), b, = (eUl,S, ey, 4 eU3,2),
bs = (eU1,4, ey, 3, eU3,3), bg = (eUI,Z, ey, 3, eUS,Z),

b7 = (eUl, 3, €U2, 1, €U3, 1), b8 = (eUI, 1, euz, 3, €U3, 2)}.
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Let (F, A)and (G, B) be two soft multisets over the same U such that
(F,A) = {(ay, ({hy, hs}, {c2}, {v2])), (a2, ({hy, hs}, {c1, €53, 0)),
(as, ({hy, ha}, {c1, c3} {r1}), (aq, {hy}, @, {vs 1))}
(G, B) = {(by, ({hy, hs, he}, {ca}, (v, v3D), (b, ({ha, hs, kel {cy, €3, €4 €53, (v2)),
(bs, ({hy, hyy hs}, {c1, ¢33, ), (ba, {he, hay R}, ©, {01, v,D),
(bs, ({hy, had {er, ¢33, (1), (be, {hy, by, s}, {ex, ¢33, Un)),
(b7, ({hy, ha}, 8, {vs]), (as, ({h, hs, he}, {c1, €33, {v1, vaD)}-
Therefore, (F,A) € (G, B).
3.5. [13] Definition
NOT Set of a set of parameters.
Let E = Wi Ey, where Ey, is a set of parameters. The NOT set of E denoted by 1E is defined by 1E =
Wier1Ey,, where 1Ey; = {Tey,j, = not ey, j, Vi, j}.
3.6. [13] Definition
Complement of a soft multiset.

The complement of a soft multiset (F,A) is denoted by (F,A)° and is defined by (F,A)¢ =
(F€,1A) where F¢:1A — U is a mapping given by F¢(a) = U — F(la), Vla € 1A.

3.4.[13] Example
Consider Example 3.1 Here
(F,A) = {(ay, (F(a))), Qaz, (F(az))), (as, (F(1a3))), (las, (F1 (1a))), Qas, (F(as))), (ag, (F(ag))),
(ay, (F (1a))), (ag, (FQag))} = {(lay, ({hy, hy, hs}, (e, €3, ¢4, 5} (01, v4)),
(laz, ({hy, ha, hs}, (c2}, (01, va)), (as, ((hy, hs, e}, {ca, €4, €53, Us))
(lay, ({hy, b, hs}, Uy, (v2,v3), (las, ({hy, hs, hs, he}, {2, €4, €5}, (v2, 1),
(lag, ({hy, ha, he}, {c2, €4, 53, D)), (ay, ({hy, hs, hs, he}, Us,, {vy, 2, v43)),

(lag, ({hy, hy, hs}, {cy, 4 5}, {v, v D)}
3.7. [13] Definition
Semi-null soft multiset.
A soft multiset (F, A) over U is called a semi-null soft multiset denoted by (F, A)~q,, if at least one of a soft

multiset parts of (F, A) equals ¢.

3.5. [13] Example
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Consider Example 3.1 again, with a soft multiset (F, A) which describes the “attractiveness of stone houses”,

“cars” and “hotels”. Let

A= (a = (eU1,4, eUZ,l,eUS,l), a, = (eU1,4, ey, 3, ey, 1), az = (ey,, 4 ey,,3,ey,,3)}.
The soft multiset (F, A) is the collection of approximations as given below:

(F, Axo, = {(a1(0,{c2}, (v]), (a2(8, {c1, ¢33, 8)), (@, (B, {cy, c5}, (w3}

Then (F, A)~q, is a semi-null soft multiset.

3.8. [13] Definition
Null soft multiset.

A soft multiset (F, A) over U is called a null soft multiset denoted by (F, A), if all the soft multiset parts of
(F,A) equals @.

3.6. [13] Example

Consider Example 3.1 again, with a soft multiset (F, A) which describes the “attractiveness of stone houses”,

“red cars model 1999 and “hotels in Kajang”. Let

A= {a1 = (eU1,4, ey, 3,eU3,4), a, = (eU1,4, ey, 4, eU3,4)}. Then soft multiset (F,A) is the collection of

approximations as below:
(F, Ao = {(ar, (0,0,0)), (az, (3,0, 9))}.
Then (F, A)~q, is a null soft multiset.
3.9. [13] Definition
Semi-absolute soft multiset.

A soft multiset (F, A) over U is called a semi-absolute soft multiset denoted by (F, 4)~y4, if (eUl. J» Fey, J) =
U;, for atleastone i,a, € A,k ={1,2,3,...,n},i € {1,2,3,...,m}and j € {1,2,3,...,7}.

3.7. [13] Example

Consider Example 3.1 again, with a soft multiset (F, A) which describes the “attractiveness of wooden houses”,

“cars” and “hotels”. Let

A={(a, = (eU1,4, eu, 1, ey, 1), a, = (eU1,4, ey, 3, ey, 1), asz = (ey,, 4 ey, 3, ey, 3)}-
The soft multiset (F, A) is the collection of approximations as given below:

(FvA)zAi = {(ai(Up {c.}, {Vz}))' (az (Ur,{c1, ¢33, Q))), (a3, (Uy, {c1, 3}, {vi )}
Then (F, A)~q, is a semi-absolute soft multiset.

3.10. [13] Definition

Absolute soft multiset.
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A soft multiset (F, A) over U is called an absolute soft multiset denoted by (F,A4), if (eUi,j, FeUl-j) =U,V,.
3.8. [13] Example

Consider Example 3.1 again, with a soft multiset (F, A) which describes the “attractiveness of wooden houses”,

“black cars model 2000” and “hotels in KL”. Let
A= {a1 = (eU1,4, ey, 3, eU3,4),a2 = (eU1,4, ey, 4, eU3,4)}.
The soft multiset (F, A) is the collection of approximations as shown below:
(F,A) 4 = {(ay, (U,,U,,Uy)), (az, (Uy, Uy, Us))}.
Then (F, A) 4 is an absolute soft multiset.
3.11. [13] Definition
The union of two soft multisets.

The union of two soft multisets (F, A), and (G, B), denoted by (F,A) U (G, B)is defined by (F,A) U (G,B) =
(H,C), where C = AU B such that forall e € C
F(¢), ife€e A—B
H(e) ={G(e), ifeeB—A
F(e)uG(e), ife€ANB.
3.9. [13] Example
Consider Example 3.1. Let

A = {al = (eUll 1’ eUZI 11 eU3! 1)! a2 = (eUll 2; eUZI 3’ eU3! 1)! a3 = (eulﬁ 4) eUz’ 3! eU3P 3)! a4- = (eull 3! eUz’ 1’ eU3! 1)}5

B ={b, = (ey,, L ey, L ey, 1), b, = (ey,, 1, ey,.2,y,,1), by = (ey,, 2, ey,,3, €y,, 1),
b, = (ey,, 5 ey, 4 €y,, 2), bs = (ey,, 2,€y,,3,€y,,2), bs = (ey,, 1, ey,, 3, €y, 2)}.
Suppose (F, A) and (G, B) are two soft multiset over the same U such that
(F, A) = {(ay, ({hy, h3}, {c2}, (v2)), (az, ({hy, hs}, {c1, ¢33, 0)),
(as, (thy, hy} {c1, €3}, {v1 1), (aq, {ha}, @, {v5}))}, and
(G, B) = {(by, ({hy, ks, he}, {2}, (w2, v3})), (bz, ((ho, B3, he}, {c1, €5, €40 C5), (v2))),
(bs, ({hy, ha, hs}, {c1, €33, 8)), (ba, (he, had, {ey, €33 (1)),
(bs, ({hy, hy, hs}, {1, ¢33, U2)), (bs, ({ha, hs, he}, {c1, ¢33, (vr, vad))}-
Therefore, (F,A) U (G,B) = (H,C)
= {(c1, (tha, hs, he}, {c2}, (v, v3D), (car Rz hs, e} {ey, €3, €40 €53, (V2,03 )D)),
(€3, ({hy, Ry, hs}, {ey, €33, 8)), (¢4 {hy, hs} {c1, €53, B)),

(CSI {hlv h4}, {Clv C3}v {171})), (CG' ({hli h4h5}' {Clv C3 }: UZ))a
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o o Bomme

(C7, ({h4}, Q' {US}))' (c8v ({th h3v hG}r {Clv C3}v {Ulv 174}))}

3.12. Definition

The restricted union of two soft multisets (F, A)and (G, B) over U denoted by (F, A) Uy (G, B) is defined as
(F,A)Ug (G,B) = (J,D),where D =ANB # @andforalle € D, J(g) = F(&) U G(¢).

3.10. Example
Consider Example 3.1. Let
A={aq = (eul, 1ey, 1 ey, 1), a, = (eUl,Z, ey, 3, ey, 1),
as = (ey,, 4 ey, 3, €y,,3),a, = (ey,, 3, ey, 1,4, 1)},
B ={b, = (ey, 1, ey, L ey, 1),b, = (ey,, 1, €y, 2,ey,,1),bs = (ey,, 2, ey,,3,€y,, 1),
b, = (eUl,S, ey, 4 eU3,2),b5 = (eul,Z, ey, 3, eU3,2),b6 = (eul, 1,ey,,3, eU3,2)}.
Suppose (F, A)and (G, B) are two soft multiset over the same U such that
(F,A) = {(ay, ({hy, hs}, {c23, {v2])), (az, ({hy, hs}, {cy, €53, 0))
(az, ({hy, Ry} {c1, €33 {v1}), (ay, {ha}, @, {v3}))}, and
(G,B) = {(bp ({ha, h3, he} {c2}, {v2, 173})), (b2: ({hy, hs, he} {1, €3, €4, C53, {Vz})),
(b3, ({hy, hay hs}, {c1, €33, ©)), (ba, {ha, had {en, €33 (v1D),
(bs, ({hy, hy, s}, {c1, ¢33, Up)), (ba, ({h2, h3, he} {cy, c3}, {1, U4}))}~
Therefore, (F,A) Ug (G,B) = (J,D) = {(dp ({ha, h3, he} {c2}, {vo, U3})): (dz: ({hy, ha, hs} {c1, c3, Q)))}
3.3. Proposition
If (F,A), (G, B) and (H, C) are three soft multisets over U, then

() (F,AT(GBTHC)= ((F,A) T (G,B)) T (H,0),
(i) (F,4) Ty (F,A) = (F,A),

(iii) (F,A) U (G, A)~0, = (R, 4),

(iv) (F,A)Tg (G, A = (F,A),

(v) (F,A) Ug (G,B)~e, = (R, D), where D = AN B,

(F,4) ifA=B,
(R,D) otherwise

(Vll) (F,A) UR (G'A)zAi = (R'A)zAi:

i) (F,A) Ug (G, B)g = { whereD = ANB,

(Vlll) (F' A) UR (GIA)A = (Gr A)Ar
(R, D)wy, if A=B,
(R,D) otherwise

(G,B), ifACB,
(R,D) otherwise’

(%) (F,4)Og (6,B)es, = { , where D = AN B,

(x) (F,A) Uy (G,B)A={ where D = AN B.
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Proof:

The proof is straight forward, hence omitted.
3.13. Definition

The restricted intersection of two soft multisets (F,A)and (G,B) over U denoted by (F,A) m (G,B) is
defined as (F,A) m (G,B) = (J,D), where D = AN B # @ and forall e € D, J(¢) = F(g) N G(¢).

3.11. Example
Consider Example 3.1. Let
A={a; = (ey,, Ley, Ley,1),a, = (ey,, 2,ey,,3,€y,,1),
as = (ey,, 4 ey, 3, €y,,3),a, = (ey,, 3, ey, 1,4, 1)},
B ={b, = (ey, 1, ey, 1 ey, 1),b, = (ey,, 1, €y, 2,ey,,1),bs = (ey,, 2, ey,,3,€y,, 1),
b, = (ey,,5 ey, 4 ey, 2),bs = (ey,, 2, ey,,3,€y,,2), bs = (ey,, 1, €y,,3, ey,,2) .
Suppose (F, A) and (G, B) are two soft multiset over the same U such that
(F,A) = {(ay, ({hy, hs}, {c23, {v2])), (az, ({hy, hs}, {cy, €53, 0))
(az, ({hy, ha} {c1, €33 {v1}), (ay, {ha}, @, {v3}))}, and
(G, B) = {(by, ({ha, ha, he}, {c2}, (v, w3 ),
(bz, ({h2, h3, he}, {c1, 3, €4, €5}, {Vz})),
(b3, ({h1, hy, hs} {c1, €33, 8)), (ba, {he, Rl {cq, c33, {Ul})),
(bs, ({hy, hy, hs}, {1, €33, U2)),
(bs, ({ha, hs, he}, {cy, ¢33, {vr, va]))}-
Therefore, (F,A) m (G,B) = (J,D) = {(dp ({ha, hs3} {c,}, {Uz}))» (dz» ({h1, hs} {c1, e}, Q))}
3.4. Proposition
Suppose (F,A), (G, B) and (H, C) are three soft multisets over U, then

i) FAa(GB)nMHC)=((FAMGB)MH,CL),
(i) (F,A)m(F,A)=(F,A),

(iii) (F,A) M (G, A~ = (R, A),

(iv) (F,A)m(G,A)e = (F,A),

(v) (F,A) m(G,B)xe, = (R, D), where D = AN B,

(F,A) if A=B,

(vi) (F,A)m(G,B)e = {(R,D) otherwise

, where D = AN B,

(Vll) (F,A) m (GiA)zAi = (RiA)zAi,
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(viii) (F,A) M (G, A) 5 = (G, A),,

(R, D) s, if A=B,

, whereD = ANB,
(R,D) otherwise v

(ix) (F,A) M (G,B)ay, = {

if A C
(G, B) if ASB, where D = AN B.

(x) (F,AM(G,B),= {(R,D) otherwise’

Proof:
The proof is straightforward.
3.14. Definition
Extended Intersection of two soft multisets.

The extended intersection of two soft multisets (F,A) and (G, B) over U denoted by (F,A) Ag (G, B) is

F (), ifeeA—B
defined as (F,A) Ng (G,B) = (H,C) where C = AU B,and Ve € C, H(g) =4 G (), ifeeB—-A
F(e)nG(e), ifeeAnB

3.12. Example
Consider Example 3.1. Let
A={aq, = (eUl,l, euz,l,euyl),a2 = (eul,Z,eU2,3,eU3, 1),a3 = (eU1,4, ey, 3, eU3,3),
a, = (eul, 3, ey, 1, ey, 1) and
B={b; = (eul, 1 ey, 1, ey, 1), b, = (eul, 1,ey,,2, ey, 1),b3 = (eUl,Z, ey, 3, eU3,1),
b, = (eUl,S, ey, 4 eU3,2),b5 = (eUl,Z, ey, 3, eUs,Z), by = (eul, 1, eU2,3,eU3,2)}.
Suppose (F,A) and (G, B) are two soft multiset over the same U such that
(F,4) = {(a1, ({ha, hs}, {c2}, {v2]), (az, ({hy, hs} {er, €33, 0)),
(a3, ({hy, ha}i {1, €33, {v1]), (aa, {hy}, @, {v3}))}, and
(G, B) = {(by, ({ha, ha, he} {c2}, {v2, v3), (ba, ({ha, hs, he} {c1, €3, Ca, €53 {2, v3 D),
(b3, ({hy, ha, hs}, {c1, €33, 8)), (ba, (he, had {e, €33, {v1])), (bs, ({hy, hy, hs}, {er, €33, U2)),
(bﬁ, ({hy, hs, he}, {c1, c3) {ve, v4}))}.
Therefore (F,A) N (G,B) = (H,C)
= {(c1, (Tha, ha}, {c2}, (v2)), (c2, ({ha, hs, he} {c1, €3, €, €53 {2, v3 D),

(63! ({hlﬂ h4_, hS}: {Clﬂ 63}: (Z)))' (64, {hll hs}, {Cli C3}’ Q)));
(CSt {hl' h4}' {Cll C3}' {vl}))' (CG' ({hl' h4—h5}' {le C3}, UZ))ﬂ
(C7' ({ha}, 0, {v3})), (cg, ({h2, h3, he} {c1, c3}, {vy, 174}))}-

3.5. Proposition

Let (F,A), (G, B) and (H, C) be three soft multisets over U, then
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(i) (F,A A ((G,B)N;H C)= ((F,A)N (G B))Ng (H,0),
(i) (F,4) Ay (F,A) = (F,A),

(iii) (F,A) A (G, Axo; = (R, Aoy

(iv) (F,A)Ng (G, Ao, = (G, Ao,

(R,D)ew, ifACHB,

v) (F,A)Ng(G,B)ag:i = { , whereD = AUB,

(R,D) otherwise
. - _((R,D)g if ACB, _
v (F.A) 0 (G, B) = {(R,D) otherwise’ where D = AU B,

(vii) (F,A) fg (G, A)a, = (R,D)
(viii) (F,A) Og (G,A), = (F,A),
(IX) (F'A) ﬁE (G'B)ZAL- = (R: D):

(F,4)  ifACB, ~
(R,D)  otherwise’ where D =AU B.

(0 (F,A) P 6,8 = |
Proof:

The proof is straightforward, hence omitted.
3.6. Proposition

Let (F,A), (G,B) and (H, C) be three soft multisets over U, then

(i) (F,AT(GB)A;H,0)= (F,ATG,B)N: ((F,A)TH,C)),
(i) (F,A)Ag ((G,B)TH,C))=((F,A) A (G, B))T((F,A) AL (HC)).

Proof:
The proofs are straightforward.
3.7. Proposition
If (F,A), (G, B) and (H, C) are three soft multisets over U, then

(i) (F,A) T ((6,B)m(H,0)) = ((F,A) Tk (G,B)) m ((F,A) Tg (H,0)),
(i) (F,A)m ((G,B) Tg (H,C)) = ((F,A) m (G,B)) Ty ((F,A) M (H,0C)).

Proof:
The proof is straightforward.
IV. DE MORGAN’S INCLUSIONS AND LAWS
We shall prove the following De Morgan’s inclusions and Laws.
4.1. Theorem

Suppose (F,A) and (G, B) are two soft multisets over U, then

i) ((F,A)TG,B) € (F,AT (G B)C,
c

(ii) (F,A)m (G, B)CE ((F,A) m (G,B))
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(i) Let(F,A)T(G,B) = (H,AUB) . Therefore, (F,A) T (G,B))" = (H,AUB), = (ﬁc, ~(AU B)). Take
—a € -(AUB),
HE (~a) = (H(@)".

(F(@)¢, if = € =A/-B
= (G(a))c, lf -1 € —|B/—|A .

(F(o)u G((I))C, ifma € -AnNn-=B

FC(—|a), if ma € —-A/-B
= Gc(ﬁa), lf -1 € —|B/—|A .

FC(—|a) n GC(—|a), ifma € -AN-=B
Consider,
(F,A)° U0 (G,B) = (F¢,-4) U (G¢,=B), = (J, A U =B), (say), where

FC(—|a), if ~a€—-A/-B
J(ma) =G (ma), if = € ~B/-A .
FC(—KZ) U GC(—MI), if-ax€—-ANn-B

Obviously, H¢ (ma) S J(—a), hence, (i) holds.

(ii) Consider (F,A)¢ m (G,B)¢ = (F¢,=4) @ (G¢, —=B) = (K,—=A N =B), (say), where K(—a) = F¢(ma) N
GC(—MZ), Vaa € =A N —=B.

On the other hand,
((F,4) A (G,B)) = (M,An B)C, (say) = (M, ~(A N B)).
Now for —a € —(A N B),

ME (=) = M (@),
= (F(a) n G(a)",
= FC(—|a) U GC(—NX).

Clearly, K(~a) = FC(—MZ) n GC(—MZ) c FC(—|a) U GC(—MX) = MC(—MX).
4.2. Theorem

If (F,A) and (G, B) are two soft multisets over U. Then the following De Morgan’s inclusions hold.
i) (F,A°m (G,B) E ((F,A)TG,B)".
(i) ((F,A)m(G,B)) € (F, AT (G,B)",
Proof

(i) Consider (F,A)¢ m (G,B)¢ = (F¢,=4) @ (G¢,—B) = (H, =4 N =B), (say), where H* (=a) = F¢(ma) N
GC(—KX), V-a € -A N —B.

Again, let (F,A) U (G,B) = (V,AUB)
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((F,A) T (G,B))" = (V,AUB)C, (say) = (V¢,=(A U B)).

For -a € =(A U B), we have

(F(a))c, lf -1 € —|A/—|B
V(=) = V(@) = {(G(@)", if ~a € =B/-A ,
(F((X) V) G((X))C, if—|a € -AN-=B
FC(—|a), if ma € —-A/-B
= GC(—MX), lf 1 € —|B/—|A .

F¢(—a) N G (—a), if-a€-AN-B
Obviously, H  (ma) € (V¢ (—a).
(ii) Suppose that (F,A) m (G,B) = (D,A N B), where D(a) = F(a) N G(a), foralla € AN B.
Therefore, ((F,4) @ (G,B)) = (D,An B)¢ = (D, ~(A N B)).
Let us take ma € —=(4 N B), then
D¢(ma) = (D(a))¢ = (F(a) N G(a) = (F(a)® U (G(a))*
DE(=a) = FE(—a) U GE (ma).
Now consider, (F,A4)¢ U (G,B)¢ = (F¢,-4) U (G¢,-B) = (T,=A U =B), (say)
For —a € -A U =B, we have
F¢(ma), if ~a € 2A/-B
T(qa) =<{G6¢(—a), if na € =B/-A .
F¢(~a) U G¢(na), if-a€-AN-B
Clearly, D¢ (—a) c T(—a).
4.3. Theorem

Let (F, A) and (G, B) be two soft multisets over U. Then the following De Morgan’s law holds.
() ((F,4)Tg (G,B)) =(F,A°m (G B)E.
(i) ((F,A) m(G,B)) = (F,A) Uy (G,B)C.
Proof:

(i) Let (F,A)Ug (G,B) = (H,C), where C=ANB # @. For all a € (AN B), we have H(a) = F(a) U
G(a).

Now, ((F,A4) Ug (G, B))" = (H,(AN B))° = (HS,-(A N B)).
For all —ma € =(A N B), we have
HS(ma) = (H@)" = (F(@) UG(a)) = F¢(ma) N GE(~a)

Also, (F,A)° @ (G,B)E = (F¢,-4) @ (GS,-B) = (K, (AN B)).
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For all ﬁa € —(A N B), we obtain K(—a) = F¢(a) N G (—a).
Since, H¢ (~a) = K(—a), therefore the result has been established.
(i) (F,A)m (G,B) =(H,AnB),where ANB # @. Forall@a € (AN B), we have H(axt) = F(a) N G(ax) .
Now, ((F,4) @ (G,B)) = (H, (AN B))¢ = (HS,~(A N B)).
For all ma € =(4 N B), we have
HE (=) = (H@)" = (F(@) n (@), = FC(~a) UG (~a).
Also, (F,A)C Tg (G,B)E = (F€,=A4) Ug (G¢,=B) = (J,mA N =B).
For all = € =A N =B, we obtain
J(ma) = FC(ma) U G¢(na).
Since, H¢ (—a) = J(—a), hence, (ii) has been established.

The example below will illustrate the relationship between restricted union (Ug) and restricted intersection (M

) in De Morgan’s Law.
4.1. Example
Consider Example 3.3. Let
A= {a1 = (eul,l, ey, 1, eU3,1),a2 = (eUl,Z,eUZ,S, ey, 1)}, and
B = {b, = (ey,, 1 ey, 1,ey,,1), by = (ey,, L ey, 2,ey,, 1), b3 = (ey,, 2, ey, 3, €y, 1)}
Suppose (F, A)and (G, B) are two soft multiset over the same U such that

(F' A) = {(aI' ({hZ' h3}, {CZ}! {Uz})), (aZ! ({hl! hS}' {C]_, C3}, 0))}’ and

(F A)C — {(_‘al' ({hll h41 hSJ hﬁ}l {Cl,c3l C4, CS}I {171,773,774})) ;}
(_|a2! ({hZ’ h3l h4—l hG}, {CZI Cy, CS}J {vll Uy, V3, U4}))

(bl' ({h’Z' h3! hé}f {CZ}! {Uz, U3}))v

(G,B) = (bz. ({hy, hs, he} {c1, c3,Ca, 53 {0, V3})); >
(b3' ({hy, ha, hs} {c1, c33, (D))
(_'bl' ({hl' h4—' hS}' {C1'C3, Cq» CS}' {Ulv 1]4-})) ’
@B =19 (aby, ({hy hy hsh (v wad), [

(mibs, ({ha, ha} {65, Ca, 5}, {1, V2, v3, 1)

(F,A)Ug (G,B) = (H,C), where C = AN B = @, = {(c, {hy, hs, he}, {c2}, {v2, vs 1))},
((F,4) Ug (6,B))" = {(~C, ({hy, hy, hs} {ey, €3, ¢4, 5} {01, 1))

Also,

(F,Am (G,B) = {(K, ({hy, ha, hs}, {c1, 3, cay s}, {1, va )}

From the foregoing, it is obvious, ((F, 4) Uy (G,B))C =(F,Am (G,B)¢
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4.4. Theorem

Let (F,A) and (G, B) be two soft multisets over U. Then the following De Morgan’s law holds.
() ((F,A)TG,B) = (F,A° Ay (GBF.
(i) ((F,A) g (G,B)) = (F, AT (G B)".
Proof:

(i) Let (F,A)U (G,B) = (H,AUB),forall @ € (A N B), we have

F(a), if a € A/B
Ha) = { G(a), ifa € BJ/A .
Fl@uG(a), ifaeANB

Now, ((F,A) T (G,B))C = (H,AUB)¢ = (H®, (A U B)), for all =a € —(A U B), we obtain

FC(—|(1), if —a€—-A/-B
H¢(ma) = GC(—ux), if ~a € -B/-A.
FC(—|a) N GC(—|a), if ~a € =AN-=B

On the other hand, let (F, A)¢ N (G,B)¢ = (F¢,—A4) Ag (G¢,=B), = (J,~A U =B).
For all —a € (A U =B), we have

FC(—|a), if ~a € -A/-B
J(=a) = { G (ma), if ~a € =B/—-A .
FC(—|a) N GC(—|a), if ~a € -AN-B

Since, H®(—a) = J(—a), hence (i) has been proved.
(ii) Let (F,A) Ng (G,B) = (H,AUB),foralla € AUB,
F(a), if a € A/B

H(a) = { G(a), if a € B/A .
Fla)nG(a), ifa€ANB

Now, let ((F,4) A (G, B))C = (H® =(A U B)), for all =& € (A U B), we have

FC(—|a), if ~a€—-A/-B
H(ma) = GC(—|a), if "a € =B/-A .
FC(—KI) U GC(—MI), if ~a € -AN-B

On the other hand, (F,A)¢ U (G,B)¢ = (F¢, -A) U (G, =B), = (K,=A U —=B), for all =a € (=AU —B),

we have
FC(—|a), if ~a€—-A/-B
K(—a) = GC(—|a), if na € =B/-A .
FC(—KI) U GC(—MI), if ~a € -AN-=B

Since, H®(—a) = K(—a), then (ii) has been established.

The example below will illustrate the relationship between union (U) and extended intersection (Ag) in De Mor-

gan's Law.
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4.2. Example

Consider Example 3.3. Let

A={ag, = (eUl,l, euz,l,eu3,1),a2 = (eUl,Z,eU2,3,eU3, 1)}, and

B ={b, = (ey,, L ey, 1,ey,,1),b, = (ey,, 1,ey,,2,ey,,1),bs = (ey,, 2, y,,3,€y,, 1)}
Suppose (F, A)and (G, B) are two soft multiset over the same U such that

(F,A) = {(‘11’ ({h2, R}, {c,}, {Vz}))’ (az, ({hy, hs} {cy, ¢33, 0))}, and

(F A)C — {(ﬁal' ({hl' hy, hs, he}, {Cl,C3' Cy, Cs}, {v1,v3, 174})) ,}
(ﬁaZI ({h21 h3l h4: hé}i {CZI C4J CS}J {vll vZ’ v3' U4_}))

(bp ({h2, h3, he}, {c2}, {va, Vs})): (b2: ({hz, h3, he}, {c1, 3, €4y €53, {va, Us}))'}

G,B) =
( ) { (bs' ({h1'h4'h5}:{01»03};®))

G B)C — {(_'bl' ({hp hy, hs}, {01,03: Cyy Cs}' {v1, U4})) , (mby, ({hy, hy, hs}, {cp} {vy, V4}))'}.
(mbs, ({hy, ksl {ca, €4y 53 {v1, V2, 3,14 1))

(F,A)U (G,B) = (H,C) where C = AUB,

Therefore,

(51: ({ha, h3, he} {c2} {v2, 173})): (Cz: ({hy, hs}, {cy, 3}, Q))), }

(R A0 (G B) = {(Cs’ ({h, hs, he} {1, €3, C4, 53, {03, V3}))' (car ({hy, ha, hs} {c1, ¢33, 0))

(_|C21 ({hZI h3l h4l h6}! {CZI C4I CS}; {vll Uz, v3l U4_})),
(_|C3, ({hll h4—1 hS}J {CZ}: {vll v4-})); J
(=cs, (Tha, hs, he} {c2, €4, €5} {v1, 12, V3,14 1))

(_|C1: ({hy, hy, hs} {cy, 3, ¢4, c53, {0y, v4})),
((F,A)T(G,B) =

Also,
(F,A)° Ng (G,B) = (H,C) = {(FC(nay) = (may, ({hy, hs, ha, he}, {ca, €4 5} {vy, v2, V3, v41))}
(F,A)¢Ag (G,B) =(H,C) =
(FC(maz) = (maz, ({hy, h3, hy, he}, {cz, ca, €53, {v1, V2, 3, 04))),
G (=by, mbs) = ((=by, ({hy, by, hs}, {2}, {ve, va])), (b3, ({h, hs}, {cz, €4y €5} {v1, v2, v, v4))),
F€(maz) N GE(mb,) = ((~ay N =by), ({hy, ha, hs}, {61, €5, a0 s} (01, 22 1))).
It is obvious that ((F,4) U (G, B)) = (F,A) iy (G,B)C.
4.1. Definition

Let (F,A) and (G, B) be two soft multiset over U. The OR product denoted by (F, A)V(G, B) is defined by
(F,A)V(G,B) = (N,A x B), where N(a,, &t;) = F(a;) U G(a,), for all (a;, ;) € A X B.

4.3. Example

Consider Example 3.3. Let
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A=

{a, = (eUl,l, euz,l,eu3,1),a2 = (eUl,Z,eU2,3,eU3, 1)}, and
B ={b, = (ey,, 1, ey, 1,ey,,1),b, = (ey,, 1, ey,,2,ey,,1),bs = (ey,, 2, €y,,3, ey, 1)}
Suppose (F, A)and (G, B) are two soft multiset over the same U such that
(F, A) = {(ay, ({hy, hs}, {c2}, (v2))), (az, ({hy, hs}, {c1, ¢33, ©))}, and
(G, B) = {(by, ({hy, hs, he}, {c2}, (w2, v3D)).(b2, ({hz, hs, he}, {er, €3 Car €53, {2, v3)),
(bs, ({hy, by, s}, ey, 33, 0))
Therefore (F,A)V(G,B) = (H,A X B) where H(a;, ;) = F(a;) U G(a,), for all
(ay, ;) € Ax B. (F,A)V(G,B) = (H,Ax B), H(a;,b,) = F(a,) U G(b,).
= {{hz, hs3},{c,}, {172}} U {hy, hs, he ) {c2}, {v,, v3}, = {{hz, hs, he}, {c}, {v,, v3}}.
H(a,,b,) = F(a,) VU G(b,).
= {{hz, hs3},{c,}, {172}} U {hy, hs, he}, {c1, €5, Car s} {12, V3],
= {{hl,hz,h3,h6}, {c1,cq,C3,Ca, C5 1, {vz,v3}}.
H(ay, bs) = F(ay) U G(bs).
= {{hy, hs} {2}, (w3} U {hy, hy, hs) {cy, 33,0, = {{hy, Ry, ha, by, hs}, {cq, €0, 033, {023}
H(a, b)) = F(a,) U G(by).
= {{hy, hs}, {c1, €3}, 8} U {hy, hs, hel, {co}, {va, w5}, = {{hy, hs, hs, he}, {c1, €2, €3}, {1, v3 3.
H(a, b,) = F(a,) UG(by).
= {{hy, hs}, {c1, c3}, B} U {hy, hs, he} {cy, €3, €4, €53, {V2, V3,
= {{hy, hy, h3, hs, he} {cy, €3, €4 5}, (v, V53
H(a,, bs) = F(a;) U G(bs).
= {{hy, hs}, {c1, ¢33, 8} U {hy, hy, his}, {cy, 5}, 0,

= {{hl, h4, hs}, {c1, c3}, (25}.

Therefore,
((@1, b)), ({{h, ha, he}, e}, (w2, v33})),
((all bz)' ({{hli h2' h3' hé}' {Cl' C2' C3' C4-' CS}! {v2r U3}})) )
11b3 ’ hlihZ'h3'h4—'h ) 1,%2,%35 2 ]
Gax) - (Caw ba), (€ s {c1, ¢, ¢}, {v2})))

((aZv bl)' ({{hl' h3' hS' hG}' {Cl' €2, C3}! {UZﬂ US}})) ’
((aZl bZ)' ({{hli h2' h3' hS' hé}' {Cl' C3,Cy) CS}! {UZJ U3}})) ’
((aZ' b3)' ({{hli h4-' hS}' {Cli C3}, o}))
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Let (F,A) and (G, B) be two soft multiset over U. The AND product denoted by (F, A)A(G, B) is defined by
(F,A)A(G,B) = (M, A x B), where M(a;, a,) = F(a;) N G(ay), forall (ay, ;) € A X B.
4.4. Example
Consider Example 3.3. Let
A={a; = (ey,, L ey, 1,ey,1),a, = (ey,, 2,ey,,3,€y,,1)}, and
B ={b, = (ey,, L ey, 1,ey,,1),b, = (ey,, 1,ey,,2,ey,,1),bs = (ey,, 2, y,,3, €y, 1)}
Suppose (F, A)and (G, B) are two soft multiset over the same U such that
(F, A) = {(ay, ({hy, hs}, {c2}, (v2))), (az, ({hy, hs}, {cy, ¢33, ©))}, and
(G, B) = {(by, ({hy, hs, he}, {c2}, {v2, 31 ).(bz, ({ha, hs, he}, {cy, €3, €4, 53, V2, v5])),
(bs, ((hy, hy, hs}, {cy, ¢33, 0))
Therefore (F,A)A(G,B) = (H,A X B) where H(a;, @,) = F(a;) U G(a,), for all
(a;,a,) € AXB.
(F,A)A(G,B) = (H,A x B), H(a,,b,) = F(a;) N G(b,).
= {{ha, h3}, {c2}, (w23} 0 {hy by, hd {c2) (v, vs), = {{he, hs) {c2), (v2)).
H(ay,b,) = F(a,) N G(b,).
= {{hy, hs}, {c2}, {023} 0 {hy, hs, hd ey, €3, Ca €53, {02, 033, = {{hy, by}, 0, {0},
H(ay,bs) = F(a,) N G(by).
= {{hy, hs}, {c2}, {v2}} N {hy, hy, hs} {c1, 33,0, = {0, 0, O}
H(a, b)) = F(a,) N G(b,).
= {{hy, hs}, {c1, €33, 8} 0 {hy, hs, he), {2}, (va, v3), = {1y}, ©, B}
H(a, b,) = F(a,) N G(b,).
= {{hy, hs}, {c1, ¢33, 8} N {hy, hs, e}, {cy, €5, €4, €53, {12, 03}, = {8, {cy, 3}, B}
H(a,, b;) = F(ay) N G(bs).
= {{hy, hs} {c1, 3}, 8} N {hy, by, hs} {1, ¢33 @, = {{hy, hs} {cy, 3}, 0}

Therefore,

{((al! bl)f ({{hz, h3}! {C2}f {172}}, )) 4 ((ali bZ)J ({{hli hZ}! o! {UZ}})) :l
(H,AxB) = ((as, b3), ({8,8,8D), ((az, by, ({1}, 8,8))),
((aZI bZ)! ({@; {le C3}! Q}))! ((aZf b3), ({{hli hS}! {Clﬂ C3}! ¢}))
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A1 Proposition
Let (F,A), (G, B) and (H,C) be three soft multiset over U. Then
(i) F,AN (G BAH,C)) = ((F,AAG,B)) AH,C).
(i) (F, AV (G, BV(H,C)) = ((F,AV(G,B)) V(H,C).
(iii) (F, A)A(F,A) = (F,A).
Proof
(i) By using definition 4.2
(F,HA ((G, B)A(H, C)) = (F,A)A(G,BxC) = (N,Ax B x (), where for all (b,c) € BxC, M(b,c) =
G(b) NH(c) and forall (a,b,c) EAXB XC,

N(a,b,c) =F(a) n M(b,c) = F(@)n(G()NH(c)) = (F@nG®b))nH(c)= Q(a,b)nH(c) with
Q(a,b) = F(a) N G(b).

(Q,AxB)A(H,C) = ((G, B)A(H, C)) A (H, C). Hence (i) has been proved.
(i) Similar to proof of (i), (ii) can be proved.

The proof of (iii) is straight forward, hence omitted.
4.5. Theorem

Let (F, A) and (G, B) be two soft multisets over U. Then the following De Morgan‘s law holds.
. x C fer
0 ((F.AG B)) = (F,A°V (G,B).
. 7 C X
(i) ((F,AV(G,B)) = (F,AF°A (G, B)F.
Proof:
(i) Let (F,A)A(G,B) = (H, A x B) and for all (a;, ;) € A x B, we have, H(ay, a,) = F(a;) N G(ax,).
~ c
Now, ((F,A)A(G,B)) = (H,Ax B)C = (H,~(A X B)), for all (~@;, ~a,) € ~(4 X B), we have
HE (maty, —ary) = (H(ay, @) = (F(ay) NG(ay)¢ = FC(ma) UG (mary).
On the other hand, let (F, A)°V (G, B)¢ = (F¢,—A)V(G®,-B), = (J, A X =B).
For all (may, ~a;,) € (mA X =B), we have J(—ay, a;y) = FC(—|a1) V) Gc(ﬂaz).
Since, H¢ (may, ~a,) = J(—ay, —ay). Therefore, (i) has been established.
(ii) Let (F,A)V(G,B) = (H, A x B) and for all (a;,a,) € A x B, we have, H(a, a,) = F(a;) U G(ax,).
_ c
Now, ((F, A)V(G,B)) = (H,Ax B)° = (H,=(A x B)), for all (=ety, ~@;) € ~(4 x B), we have

HE (may, —ay) = (H(ay, @) = (F(a,) UG(ay)¢ = FC(may) N GE(may).

On the other hand, let (F, A)°A (G, B)¢ = (F¢,~A)A(G®,-B), = (K, =A X =B).
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For all (ma;, ma,) € (A X =B), we have K(—a,, ma;) = F¢(ma,) N G (ay).
Since, H (~a,, ma,) = K(—a,, ~a,). Therefore, (ii) has been established.
4.3. Definition

The restricted difference of two soft multisets (F, A) and (G, B) over U denoted by (F,A) ~¢ (G, B) and is
defined as (F,A) ~g (G,B) = (H,C), where C =ANB # @ and for all ¢ € C, H(a) = F(a)—xG(a). The
difference of sets F(a) and G (&) is denoted by F(a)—rG (a) and is defined as F(a)—rG(a) = F(a) N G¢(a).

4.5. Example
Consider Example 3.3. Let
A={aq, = (eUl,l, euz,l,euyl),a2 = (€U1,2,6U2,3,6U3, 1)}, and
B ={b, = (ey,, 1, ey, L ey, 1),b, = (ey,, 1,€y,,2,ey,,1),bs = (ey,, 2, y,,3, €, 1)}
Suppose (F, A)and (G, B) are two soft multiset over the same U such that

(F' A) = {(alﬁ ({hZ' h3}' {CZ}' {Vz}))}: and (G' B) = {(bli ({hZ' h3' h’6}t {CZ}' {UZJ v3}))n
(bz' ({hy, h3, he}, {c1, c3, €4 €53, {03, Vs})): (bsn ({hy, hg, hs} {cy, ¢33, Q))

Let(F,A) ~g (G,B) = (H,C), where C=ANB+# @ and for all ¢ € C, H(a) = F(a)—xG(a). The
difference of sets F (a) and G (&) is denoted by F (a)—G (a) and is defined as F(a)—zG(a) = F(a) N G¢(a).

F(ay) = ({hy, ha} {c2}, {v2]), FC(may) = ({hy, hy, hs, he} {1, c3, ¢4, €53, {v1, v3, 04 1),
G(by) = ({hy, h3, he}, {c2}, {va, v3}), GE(mby) = ({hy, hu, hs} {cy, €3, €4, C5} {1, va ),
Therefore, F(a)—pG(a) = F(a) NG (-a) = {0, 8, @}

4.4. Definition

The restricted symmetric difference of two soft multisets (F,A) and (G,B) over U denoted by
(F,A)AR(G,B), such that AN B # @ and is defined as

(F, M)A (G,B) = ((F,A) ~ (G,B)) U ((G,B) ~x (F,A)), = ((F,A)n(G,B)°) VU ((G,B) N (F,A)°).
4.6. Example
Consider Example 3.3. Let
A={a, = (eul,l, ey, 1, eU3), a, = (eUi,Z, ey,, 3, ey, 1)}, and
B ={b, = (ey,, L ey,, 1,ey,,1),b, = (ey,, 1,ey,,2,ey,,1),bs = (ey,, 2, y,,3, €y, 1)}
Suppose (F, A)and (G, B) are two soft multiset over the same U such that
(F,4) = {(a1, ({hy, h3}, {c2}, (), (az, ({hy, hs}, {ey, ¢33, 8))}, and
(G,B) = {(bp ({hz, h3, he}, {c2} {2, Us})),(bz’ ({h2, h3, he}, {c1, 3, Car €53}, {va, 173})).

(b3, ({hy, Ry, hs}, {c1, ¢33, D).
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(F, A)Bx(G, B) = ((F,4) ~¢ (G,B)) U ((G,B) ~x (F,A)), = (F(@) n G°(~a)) U (G(a) N FE(~ar)).
F(ay) = ({hy, hs}, {e2}, {v2}), FO(may) = ({hy, hy, hs, he}, {c1, 3, €4, €53, {v1, 13, v4)),
G(b1) = ({hy ha, he} {c2} (v, v5}), GE(mby) = ({hy, by, hs} {cy, €3, 4, c53, (o1, va)),
Therefore, F(ay)—rG(by) = F(a) NG¢(=by) = {0, @, 0},
G(by)—rF(ay) = G(by) N FC(nay) = {{he}, B, {v3} }.
(F(ay) 0 GE(=b1)) U (G(by) N FE(may)) = {{he} @, (w33},
V. CONCLUSION

In this paper, as our major contributions, we have defined restricted union, restricted intersection, extended
intersection AND-product, OR-product, restricted difference, and restricted symmetric difference with relevant
examples and illustrations in the background of soft multiset. Basic properties of the operations were presented
and some results investigated. Various types of De Morgan’s laws and inclusions and were stated and proved,

supported with relevant examples.
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