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I. I NTRODUCTION
 
Throughout this paper, we denote by

�∗ the sets of all integers, non-negative integers,positive 
integers, complex numbers and non
numbers, respectively. All vectorspaces   are over 

For � ∈ � , let 	
 � ��
�
��, ⋯ , 

�

polynomial algebra over �.  TheWitt algebra of rank 
theLie algebra of all derivations of 	
, and is denoted 

�
 , that is,�
 � ����	
�.  Denote by

���, ⋯ , �
� ∈ �
 and � � ���, ⋯ , �
�

�� ⋯ 
��, ���, �� � 
� ∑ �� �
�!� .Then �
of the set "���, ��|� ∈ �
, � ∈ �
$.The Liebracket in 
defined by %���, ��, ��&, '�( � ��), �
�
 , �, ' ∈ �
, ) � ��|'�& * �&|���  and 
standard symmetric bilinear form on�

+ � ⨁�!�
 � � is the Cartansubalgebra of 
V is called a weight module provided th
on V is diagonalizable. If the action of 
diagonalizable, + is a non-weight module

 The weight representation theory over
studied,especially, Billig and Futorny classified the 
Harish-Chandra modules over �
  in [1
examples of weight modules with weight spaces to be 
infinite-dimensional (see [2]). In [4], a lot of  non
modules over �
   are constructed and studied, and one 
class of them are defined as follows. 

Example 1.Let �%-�, ⋯ , -
( be the polynomial 
associative algebra over �  in
indeterminates -�, ⋯ , -
 .  For any 
�.�, ⋯ , .
� ∈ ��∗�
 we define the action 
of�
on�%-�, ⋯ , -
(by 

� � ∙ 0�-�, ⋯ , -
� 

� Λ��-� * ��2��0�-� * ��, ⋯ ,
where � � ���, ⋯ , �
� ∈ �
, 0�-�, ⋯ , -
�
andΛ� � .�

�� ⋯ .

�� .The corresponding �

denoted byΩ�Λ, 2�. From [4] we know tha
irreducible if and only if4 0. 

The main purpose of the present paper is to construct 
new irreducible  �
-modules by taking tensor products of 
finite  �
-modulesΩ�Λ, a) . More precisely, we will prove 

the following 
Theorem 2. Let6 ∈ �. ForΛ7 � �.�7,
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Throughout this paper, we denote by�, �:, �, � and 
negative integers,positive 
and non-zero complex 

numbers, respectively. All vectorspaces   are over �. 
��; bethe Laurent 

Witt algebra of rank � is  
, and is denoted by 

Denote by � � 
�
<
<= .

For� �
� ∈ �


, let 
� �
�
is thelinear span 

The Liebracket in �
is 
� > '� where�, & ∈

and �∙ | ∙� is the 

 .It is known that 

of �
. A �
module 
provided that the action of + 

diagonalizable. If the action of +  on +  is not 
e. 

ry over �
  is well 
especially, Billig and Futorny classified the 

1]. There are also 
examples of weight modules with weight spaces to be 

], a lot of  non-weight 
are constructed and studied, and one 

be the polynomial 
in �  commuting 

For any 2 ∈ � and Λ �
define the action 

-
 * �
� 
� ∈ �%-�, ⋯ , -
( 

�
-module is 
thatΩ�Λ, 2�is 

The main purpose of the present paper is to construct 
modules by taking tensor products of 

. More precisely, we will prove 

⋯ , .
7� ∈

��∗�
, 27 ∈ �∗, 1 ? @ ? 6with.
�.letΩ�Λ7 , 27� be the irreducible
Example 1.   Then the tensor product

Ω�Λ�, 2��⨂ ⋯ ⨂
is an irreducible �
-module. 

This theorem will be proved in Section II. This theorem 
tells us that from the known irreducible
modulesΩ�Λ7 , 27� we can constr
modules as long as the Λ7
mentioned in the theorem. Clearly, these modules are not 
isomorphic to the modules obtained in [4]. So 
provides a method of finding irreducible 
Witt algebra WC�� 8 1�. 

 
II. PROVING 

 
In this section, we will prove 

theorem, we need the following 
Lemma 2 in [3]. 

Lemma 3. Let .�, ⋯ , .D ∈ �
⋯ > '
 � '.Define a sequence of functions on

0���� � .�
 , 0E��� � �.�

0F�:���� � .E
 , ⋯ , 0F�:

⋯ , 0F��� � �
Let G � �HIJ� be the ' K '  matrix with 
1�, L � 1, ⋯ , ', M � � > 1, ⋯ , �
N�
�G� � O�'7 * 1�!!

D

7!�
.7

FQ�FQ:

where '7!! � '7! K �'7R�!� K ⋯
convenience. 

Now we can prove our main theorem.
Proof of Theorem 2. For convenience, we denote

by S � Ω�Λ� , 2��⨂ ⋯ ⨂Ω�ΛD
element of ΩTΛ7 , 27Uand denote by

1V � 1�⨂ ⋯ ⨂
For W7 � TX7�, ⋯ , X7
U ∈ �:
we denote by 

∏ -7�
ZQ=
�!� and denote by[�

\� ⋯ [
define the degree of [�

\� ⋯ [D
\]

where|W7| � ∑ X7�
�!� . For 0 4
defined to be the degree of its terms with maximal degree 
and is denoted by deg�0�. Note that 

Firstly, we have the following 
Claim 1. 1Vgenerates the whole module 
Let � be the submodule of S

only to show[�
\� ⋯ [D

\] ∈ � for all 
fixed W7 ∈ �:
 , 1 ? @ ? 6,noting that
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.7� 4 .7a� , @ 4 @′, 1 ? c ?
be the irreducible �
-modules as in 

Example 1.   Then the tensor product 
⨂Ω�ΛD , 2D� 

This theorem will be proved in Section II. This theorem 
tells us that from the known irreducibleWC -

we can construct irreducible WC -

7 ′'  satisfy the conditions 
Clearly, these modules are not 

isomorphic to the modules obtained in [4]. So Theorem2 
provides a method of finding irreducible modules over 

ROVING THEOREM 2 

prove Theorem 2. To prove the 
theorem, we need the following crucial lemma which is 

�, '�, ⋯ , '
 , ' ∈ � with '� >
of functions on�as follows : 

�
 , ⋯ , 0F���� � �F�.�
 , 
:Fd��� � �FdR�.E
 , 
�F]R�.D
 . 
matrix with HIJ � 0J�M *
� > ' where � ∈ �:. Then 

:E�R��/E O �.� * .7�F=FQ

�f�ghfi
 

⋯ K 1! with 0!! � 1 ,  for 

Now we can prove our main theorem. 
For convenience, we denote 

� D , 2D�.Let 17be the identity 
and denote by 

⨂1D ∈ M. 
we denote by [7

\Q �
[D

\] � [�
\�⨂ ⋯ ⨂[D

\]. We 
]to be∑ |W7|D7!�  

0 ∈ S, the degree of f is 

defined to be the degree of its terms with maximal degree 
. Note that deg�1V� � 0. 

Firstly, we have the following  
generates the whole module S. 

S generated by 1V. We need 
for all W�, ⋯ , WD ∈ �:
 .For 

noting that 
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�
�= � ∙ [�

\� ⋯ [D
\] � k [�

\� ⋯ l
�
�= � ∙ [

D

7!�

� k [�
\� ⋯ l.7�

�=-7�
ZQ� ⋯ �-7�

D

7!�
* ��2���-7� * ���ZQ= ⋯ -

� �k .7�
�=-7�

D

7!�
�[�

\� ⋯ [D
\] > 	 

where	  has degree ∑ |W7|D7!� . Taking �
and c � 1,2, ⋯ , n ,respectively, and by induction 
on ∑ |W7|D7!� we see that [�

\� ⋯ [
W�, ⋯ , WD ∈ �:
 .Thus the claim holds. 

The claim means that to prove the theorem is to prove 
that 1V ∈ �  for any nonzero submodule
nonzero submodule of S and let0 4 0
degree. We have 

Claim 2. deg�0� � 0,thatis, 0 � o1Vfor some
To the contrary, assume deg �0� 8

contradiction we define a partial orderon
�X�, ⋯ , X
� p ���, ⋯ , �
� 

⟺ �∃c s 0��X7 � �7 , ∀@ p c�
where�X�, ⋯ , X
�, ���, ⋯ , �
� ∈ �:
 ,  and define a 
order on the sett[�

\� ⋯ [D
\]uW�, ⋯ , WD ∈

[�
\� ⋯ [D

\] p [�
v� ⋯ [D

v] 

⇔ �∃c s 0��W7 � x7, ∀@ p c�
whereW7 , x7 ∈ �:
 , 1 ? @ ? 6. 

Denote by 0 � ∑ o\y[\y\y∈z where {  
of �:
KD  andWy � �W�, ⋯ , WD� ∈ {  with 

6, o\y ∈ �∗  and [\y � [�
\� ⋯ [D

\] . Let o
the maximal nonzero term of 0with respect to the partial
order defined above. Clearly, W|7 �
0 for some @.So some X|7� 8 0. Letting 
have 


�
�= � ∙ 0 � k k o\y

D

7!�
[�

\�

\y∈z
⋯ l
�

�= � ∙ [7
\Q} ⋯ [


\� 

           � k k k ��~.7�
�=�\y,7,~[�

\� ⋯ �-7�
ZQ� ⋯ -7�

ZQ=:
ZQ=:�

~!|

D

7!�\y∈z

where �\y,7,~ � o\y�*1�~��X7�
� � > � X7�

� * 1�
From Lemma 3 we see that the coefficient of 

to � for all @, �. In particular, the coefficient of 
is 
� � �*1�Z�Q=:�o\y�[�

\�� ⋯ �-7�
Z�Q� ⋯ -7�| ⋯ -7


Z�Q�� ⋯
which has lower degree thano\y�[�

\��

contrary to the choice of 0. Thus N���0�
Claim 2 means that 1V ∈ �  and the theorem follows 

from Claim 1.∎ 
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