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|. INTRODUCTION

Throughout this paper, we denote Z,Z,,N,C and
C*the sets of all integers, naregative integers,positi\
integers, complex numbersand nor-zero complex
numbers, respectively. All vectorspaces are C.

For neN , let 4, = C[tf",,tF'] bethe Laurent
polynomial algebra ove€. Thaaitt algebra of rank n is
theLie algebra of all derivations df,, and is denoteby
W, that isW, = Der(4,). Denote bd;, = ti%Forr =
(r, 1) €EZ™ and u = (uy,+,u,) EC* et t7 =
t" e t™, D(u,r) =t YL, u;0;. ThenW,is thelinear span
of the se{D(u,r)|u € C*,r € Z"}.The Liebracket irW,,is
defined by[D(u,r),D(v,s)] = D(w,r + s) whereu,v €
Chr,seZ™ w=(uls)v—@|r)u and (-|-) is the
standard symmetric bilinear form @h.It is known that
b = @]-,Co; is theCartansubalgebra of W,,. A W, module
V is called aweight module provided tlat the action of
on V is diagonalizable. If the action ¢ on} is not
diagonalizable}) is anon-weight module.

The weight representation thgooverW, is well
studiedespecially, Billig and Futorny classified t
Harish-Chandra modules ov&f, in [1]. There are also
examples of weight modules with weight spaces t
infinite-dimensional (see [2]). In J4a lot of nor-weight
modules oveil,, are constructed and studied, and
class of them are defined as follows.

Example 1.let C[xy,-,x,] be the polynomial

associative algebra over € in n commuting
indeterminates x;,-:*,x,. For any a€C and A=
Ay, =, A) E(@H™ we define the action

ofW,,onC[x, -+, x,, by
trai ! f(xll ] xn)
=N (0 —nra)f (e =1, %0 — 1)

wherer = (ry, -+, 1,) € Z™, f(xq, -, Xp) € Clxy, ++, %]
andA” = A}! --- ;;}.The corresponding W,,-module is
denoted byQ (A, a). From [4] we know thatQ(A, a)is
irreducibleif and only if# 0.

The main purpose of the present paper is to carts
new irreducibleW,,-modules by taking tensor products
finite W,-module$)(A, @). More precisely, we will prov

the following

Theorem 2. Letm € N. ForA; = (44,++,4,;) €

(€)' a €CL1<j<mwithd; # Ay, j #j,1<i<
n.letQ(4;, a;) betheirreducible W,-modules asin
Example 1. Then the tensor product

Q(Al' a)® - @QU(Am, am)
isan irreducible W, -module.

This theorem will be proved in Section Il. This dhem
tells us that from the known irreduciblwW, -
modulesQ(A;, a;) we can consuct irreducible W, -
modules as long as tha;’s satisfy the conditions
mentioned in the theorerntlearly, these modules are 1
isomorphic to the modules obtained in [4]. Theorem?2
provides a method of finding irreducibmodules over
Witt algebraW, (n > 1).

Il. PROVING THEOREM 2

In this section, we wilproveTheorem 2. To prove the
theorem, we need the followiicrucial lemma which is
Lemma 2 in [3].

Lemma 3. LetA, -+, 4, €C, sy, Sy, S € Nwiths; +
-+ s, = s.Define a sequence of functions onZas follows :
fl(n) = 7le.l'fZ(n) = nl",---,fsl(n) = nslln;
for1 () = A3, fs,45,(0) = 527123,
‘f;(n) = nsm—lﬂ%.

Let Y = (Vpq) be the s xs matrix with Ypq = fq(@ —
,q=1-,s,p=r+1,,r+swherer € Z,. Then
m

det(Y) = 1_[(5]' - 1)!!/1]. 1_[ A — )lj)sisf

j=1 1<i<jsm
where s;!! = s;! X (s;_4!) X - x 11 with 0!'=1,
convenience.

Now we can prove our main theort

Proof of Theorem 2. For convenience, we den
byM = Q(A,a)® -+ QQ(Ap,, a,,).Let 1;be the identity
element of(4;, a;)and denote t

1=1,0-®1, EM.

ForK; = (kjy, -+, kju) € Zwe denote ijjKj =
H?zlx;?iand denote by/* ... xfm = X1 ® ... @xXm we
define thedegree of XlK1 ce XKmig beiL, IK;|
wherdK;| = XL, k;;. For0 # f € M, thedegree of fis
defined to be the degree of its terms with maxidegjree
and is denoted byeg(f). Note thaideg(1) = 0.

Firstly, we have the followin

Claim 1. 1generates the whole modiM.

Let W be the submodule 8f generated by. We need
only to showk|* .- X,m € Wfor all Ky, K, € Z%.For
fixed K; € Z%,1 < j < m,noting tha

S]'(Sj+27'—1)/2

for
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m
. K;
o XKm leKl (tirlai X, 1) e Xom
j=1

. k;
Tl Jj1
(Aﬁ X1

(xji

ok
— 13a;) (x5 — )" - xjrfn> o Xy

m
- (Z At XK xfm 4 g
=1

whered has degre@iL, |K;|. Takingr; =0,1,--,m—1
and i=1,2,--,n respectively, and by inductic
on YL, |K;| we see that Xfl o Xkmew for all
K, , K, € Z}.Thus the claim holds.

The claim means that forove the theorem is to pro
that 1 € W for any nonzero submodiul/.Let W be a
nonzero submodule @f and le® # f € M with minimal
degree. We have

Claim 2. deg(f) = 0,thatis,f = c1for some« € C*.

To the contrary, assumeéeg (f) > 0 For finding a
contradiction we define partial orderon Z" by
(ky, o ky) < (1,00, 1)

e @iz 0k =r, Uj<i)k; <n)
where(ky, -+, ky), (ry, -+, 1) € Z}, and define apartial
order on the s¢iX, -+ Xy |Ky, -+, K, € Z}by
Xfl e X< Xfl oo X Rm

© @iz 0)(K =R, Uj<i) (K <R)
wherel;, R; € Z%,1 < j < m.

Denote byf = YrzescgX¥whereS is a finite subset
of Z}*™ andK = (K;,-+,K,,) €S with K; € 21,1 < j <
m, cg € C' andXX = X;* - Xy, Let cg X, °F - Xp 0™ be
the maximal nonzero term ¢fvith respect to the part
order defined above. Clearlys,; = (koj1,*,Kkojn) >
0 for somej.So somek,;; > 0. Letting tl.”aiact onf, we
have

m
¢, f = zz CRX:G (ti"iai .Xij) o X

KeS j=1
m kjitl
- Urip xKu Rttt Ry K
_ZZZ TidjibRjaXyt e (g, X ) Ko
KeS j=1 1=0

where bg ;; = c,;(—l)l((klf") + (l kﬁl) a;) and r; € Z,.
From Lemma 3 we see that the coefficienr;/ 27/belongs
to W for allj, L. In particular, the coefficient (nk""iﬂ/l;ii
is
g= (—1)"°fi+1c,70Xf°1 (g, xj; mxj’:’j") < XFom 1 Jower terms
which has lower degree thap X;°*--X,o™. This is
contrary to the choice ¢f. Thusdeg(f) = 0, as desired.
Claim 2 means thall € W and the theorem follown
from Claim 1.m

Koj1 . 0
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